These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 14990355
1. Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of Mammalian cells. Hoffmann S, Spitkovsky D, Radicella JP, Epe B, Wiesner RJ. Free Radic Biol Med; 2004 Mar 15; 36(6):765-73. PubMed ID: 14990355 [Abstract] [Full Text] [Related]
2. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice. Trapp C, McCullough AK, Epe B. Mutat Res; 2007 Dec 01; 625(1-2):155-63. PubMed ID: 17675188 [Abstract] [Full Text] [Related]
3. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Green RM, Graham M, O'Donovan MR, Chipman JK, Hodges NJ. Mutagenesis; 2006 Nov 01; 21(6):383-90. PubMed ID: 17012304 [Abstract] [Full Text] [Related]
4. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Miranda S, Foncea R, Guerrero J, Leighton F. Biochem Biophys Res Commun; 1999 Apr 29; 258(1):44-9. PubMed ID: 10222232 [Abstract] [Full Text] [Related]
5. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ. Mitochondrion; 2007 Apr 29; 7(1-2):106-18. PubMed ID: 17307400 [Abstract] [Full Text] [Related]
6. Aldehydic DNA lesions in calf thymus DNA and HeLa S3 cells produced by bacterial quinone metabolites of fluoranthene and pyrene. Zielinska-Park J, Nakamura J, Swenberg JA, Aitken MD. Carcinogenesis; 2004 Sep 29; 25(9):1727-33. PubMed ID: 15117810 [Abstract] [Full Text] [Related]
7. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. KC S, Cárcamo JM, Golde DW. FASEB J; 2005 Oct 29; 19(12):1657-67. PubMed ID: 16195374 [Abstract] [Full Text] [Related]
8. Oxidation-induced changes in human lens epithelial cells 2. Mitochondria and the generation of reactive oxygen species. Huang L, Tang D, Yappert MC, Borchman D. Free Radic Biol Med; 2006 Sep 15; 41(6):926-36. PubMed ID: 16934675 [Abstract] [Full Text] [Related]
9. Role of endogenous oxidative DNA damage in carcinogenesis: what can we learn from repair-deficient mice? Epe B. Biol Chem; 2002 Sep 15; 383(3-4):467-75. PubMed ID: 12033436 [Abstract] [Full Text] [Related]
10. Mitochondrial oxidative stress can lead to nuclear hypermutability. Hartman P, Ponder R, Lo HH, Ishii N. Mech Ageing Dev; 2004 Jun 15; 125(6):417-20. PubMed ID: 15178131 [Abstract] [Full Text] [Related]
14. Hyperoxia and thyroxine treatment and the relationships between reactive oxygen species generation, mitochondrial membrane potential, and cardiolipin in human lens epithelial cell cultures. Huang L, Yappert MC, Jumblatt MM, Borchman D. Curr Eye Res; 2008 Jul 15; 33(7):575-86. PubMed ID: 18600490 [Abstract] [Full Text] [Related]
15. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. Dzierzbicki P, Koprowski P, Fikus MU, Malc E, Ciesla Z. DNA Repair (Amst); 2004 Apr 01; 3(4):403-11. PubMed ID: 15010316 [Abstract] [Full Text] [Related]
19. Human cytochrome P450 reductase can act as a source of endogenous oxidative DNA damage and genetic instability. Heine T, Glatt H, Epe B. Free Radic Biol Med; 2006 Mar 01; 40(5):801-7. PubMed ID: 16520232 [Abstract] [Full Text] [Related]