These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5). Liang ZX, Nocek JM, Huang K, Hayes RT, Kurnikov IV, Beratan DN, Hoffman BM. J Am Chem Soc; 2002 Jun 19; 124(24):6849-59. PubMed ID: 12059205 [Abstract] [Full Text] [Related]
5. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch. Trana EN, Nocek JM, Knutson AK, Hoffman BM. Biochemistry; 2012 Oct 30; 51(43):8542-53. PubMed ID: 23067206 [Abstract] [Full Text] [Related]
6. Electrostatic redesign of the [myoglobin, cytochrome b5] interface to create a well-defined docked complex with rapid interprotein electron transfer. Xiong P, Nocek JM, Griffin AK, Wang J, Hoffman BM. J Am Chem Soc; 2009 May 27; 131(20):6938-9. PubMed ID: 19419145 [Abstract] [Full Text] [Related]
8. Preparation of apo-cytochrome b5 utilizing heme transfer to apo-myoglobin. Mrazova B, Martinek V, Martinkova M, Sulc M, Frei E, Stiborova M. Neuro Endocrinol Lett; 2009 May 27; 30 Suppl 1():72-9. PubMed ID: 20027148 [Abstract] [Full Text] [Related]
10. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex. Keinan S, Nocek JM, Hoffman BM, Beratan DN. Phys Chem Chem Phys; 2012 Oct 28; 14(40):13881-9. PubMed ID: 22955681 [Abstract] [Full Text] [Related]
11. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5. Hunter CL, Lloyd E, Eltis LD, Rafferty SP, Lee H, Smith M, Mauk AG. Biochemistry; 1997 Feb 04; 36(5):1010-7. PubMed ID: 9033390 [Abstract] [Full Text] [Related]
12. [Study of electron transport in heme proteins. X. Effect of pH, ionic strength, and zinc ions and the rate of ferricytochrome c reduction by oxymyoglobin from swine heart]. Postnikova GB, Tselikova SV, Sivozhelezov VS. Mol Biol (Mosk); 1992 Feb 04; 26(4):880-90. PubMed ID: 1331770 [Abstract] [Full Text] [Related]
13. [Electron transfer in hemoproteins. VIII. Influence of ionic strength on the rate of reduction of ferricytochrome c by oxymyoglobin derivatives, chemically modified at histidine residues]. Postnikova GB, Shliapnikova EA, Atanasov BP, Vol'kenshteĭn. Mol Biol (Mosk); 1982 Feb 04; 16(1):104-16. PubMed ID: 6280031 [Abstract] [Full Text] [Related]
14. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c. Rodríguez-Marañón MJ, Qiu F, Stark RE, White SP, Zhang X, Foundling SI, Rodríguez V, Schilling CL, Bunce RA, Rivera M. Biochemistry; 1996 Dec 17; 35(50):16378-90. PubMed ID: 8973214 [Abstract] [Full Text] [Related]
15. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5. Storch EM, Daggett V, Atkins WM. Biochemistry; 1999 Apr 20; 38(16):5054-64. PubMed ID: 10213608 [Abstract] [Full Text] [Related]
16. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Qian W, Sun YL, Wang YH, Zhuang JH, Xie Y, Huang ZX. Biochemistry; 1998 Oct 06; 37(40):14137-50. PubMed ID: 9760250 [Abstract] [Full Text] [Related]
17. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo. Soriano GM, Ponamarev MV, Piskorowski RA, Cramer WA. Biochemistry; 1998 Oct 27; 37(43):15120-8. PubMed ID: 9790675 [Abstract] [Full Text] [Related]
18. [Applicability of molecular electrostatic interaction models to describing ionic strength dependence of reaction rate between myoglobin and cytochrome c]. Komarov IuE, Sivozhelezov VS, Postnikova GB. Biofizika; 1998 Oct 27; 43(1):16-25. PubMed ID: 9567172 [Abstract] [Full Text] [Related]
19. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5. Kollipara S, Tatireddy S, Pathirathne T, Rathnayake LK, Northrup SH. J Phys Chem B; 2016 Aug 25; 120(33):8193-207. PubMed ID: 27059440 [Abstract] [Full Text] [Related]