These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 14995197
1. Optical sensor for the detection of caspase-9 activity in a single cell. Kasili PM, Song JM, Vo-Dinh T. J Am Chem Soc; 2004 Mar 10; 126(9):2799-806. PubMed ID: 14995197 [Abstract] [Full Text] [Related]
2. Detection of cytochrome C in a single cell using an optical nanobiosensor. Song JM, Kasili PM, Griffin GD, Vo-Dinh T. Anal Chem; 2004 May 01; 76(9):2591-4. PubMed ID: 15117202 [Abstract] [Full Text] [Related]
3. Optical nanosensors for detecting proteins and biomarkers in individual living cells. Vo-Dinh T. Methods Mol Biol; 2005 May 01; 300():383-401. PubMed ID: 15657493 [Abstract] [Full Text] [Related]
4. A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy. Angres B, Steuer H, Weber P, Wagner M, Schneckenburger H. Cytometry A; 2009 May 01; 75(5):420-7. PubMed ID: 19097170 [Abstract] [Full Text] [Related]
5. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-x(L) in a strictly caspase-3-dependent manner in human carcinoma cells. Hasenjäger A, Gillissen B, Müller A, Normand G, Hemmati PG, Schuler M, Dörken B, Daniel PT. Oncogene; 2004 Jun 03; 23(26):4523-35. PubMed ID: 15064710 [Abstract] [Full Text] [Related]
6. Hyperthermia engages the intrinsic apoptotic pathway by enhancing upstream caspase activation to overcome apoptotic resistance in MCF-7 breast adenocarcinoma cells. Klostergaard J, Leroux ME, Auzenne E, Khodadadian M, Spohn W, Wu JY, Donato NJ. J Cell Biochem; 2006 May 15; 98(2):356-69. PubMed ID: 16440323 [Abstract] [Full Text] [Related]
7. Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Wu Y, Xing D, Luo S, Tang Y, Chen Q. Cancer Lett; 2006 Apr 28; 235(2):239-47. PubMed ID: 15958279 [Abstract] [Full Text] [Related]
8. A P-glycoprotein- and MRP1-independent doxorubicin-resistant variant of the MCF-7 breast cancer cell line with defects in caspase-6, -7, -8, -9 and -10 activation pathways. Park SJ, Wu CH, Safa AR. Anticancer Res; 2004 Apr 28; 24(1):123-31. PubMed ID: 15015586 [Abstract] [Full Text] [Related]
9. P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M, Ikejima T. Acta Pharmacol Sin; 2007 Jul 28; 28(7):1057-66. PubMed ID: 17588343 [Abstract] [Full Text] [Related]
10. Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis. Chen JS, Konopleva M, Andreeff M, Multani AS, Pathak S, Mehta K. J Cell Physiol; 2004 Aug 28; 200(2):223-34. PubMed ID: 15174092 [Abstract] [Full Text] [Related]
11. Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Jänicke RU. Cancer Res; 2004 Oct 01; 64(19):7065-72. PubMed ID: 15466201 [Abstract] [Full Text] [Related]
12. [Effect of ursolic acid on caspase-3 and PARP expression of human MCF-7 cells]. Zhang GP, Lu YY, Lv JC, Ou HJ. Zhongguo Zhong Yao Za Zhi; 2006 Jan 01; 31(2):141-4. PubMed ID: 16570804 [Abstract] [Full Text] [Related]
13. The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway. Lee JH, Li YC, Ip SW, Hsu SC, Chang NW, Tang NY, Yu CS, Chou ST, Lin SS, Lino CC, Yang JS, Chung JG. Anticancer Res; 2008 Jan 01; 28(3A):1701-11. PubMed ID: 18630529 [Abstract] [Full Text] [Related]
14. N-Ac-DEVD-N'-(Polyfluorobenzoyl)-R110: novel cell-permeable fluorogenic caspase substrates for the detection of caspase activity and apoptosis. Zhang HZ, Kasibhatla S, Guastella J, Tseng B, Drewe J, Cai SX. Bioconjug Chem; 2003 Jan 01; 14(2):458-63. PubMed ID: 12643757 [Abstract] [Full Text] [Related]
15. Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. Stefflova K, Chen J, Marotta D, Li H, Zheng G. J Med Chem; 2006 Jun 29; 49(13):3850-6. PubMed ID: 16789741 [Abstract] [Full Text] [Related]
16. Nanobiosensors: probing the sanctuary of individual living cells. Vo-Dinh T. J Cell Biochem Suppl; 2002 Jun 29; 39():154-61. PubMed ID: 12552615 [Abstract] [Full Text] [Related]
17. Antimycin A-induced killing of HL-60 cells: apoptosis initiated from within mitochondria does not necessarily proceed via caspase 9. King MA. Cytometry A; 2005 Feb 29; 63(2):69-76. PubMed ID: 15655802 [Abstract] [Full Text] [Related]
18. Cross talk between apoptosis and invasion signaling in cancer cells through caspase-3 activation. Mukai M, Kusama T, Hamanaka Y, Koga T, Endo H, Tatsuta M, Inoue M. Cancer Res; 2005 Oct 15; 65(20):9121-5. PubMed ID: 16230365 [Abstract] [Full Text] [Related]
19. Role of mitochondrial cardiolipin peroxidation in apoptotic photokilling of 5-aminolevulinate-treated tumor cells. Kriska T, Korytowski W, Girotti AW. Arch Biochem Biophys; 2005 Jan 15; 433(2):435-46. PubMed ID: 15581600 [Abstract] [Full Text] [Related]
20. Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells. Sylvester PW, Shah S. Asia Pac J Clin Nutr; 2005 Jan 15; 14(4):366-73. PubMed ID: 16326643 [Abstract] [Full Text] [Related] Page: [Next] [New Search]