These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 14997360

  • 1. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultrafiltrate.
    Simova ED, Frengova GI, Beshkova DM.
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):115-21. PubMed ID: 14997360
    [Abstract] [Full Text] [Related]

  • 2. Beta-carotene-rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture.
    Frengova GI, Simova ED, Beshkova DM.
    Z Naturforsch C J Biosci; 2006 Mar; 61(7-8):571-7. PubMed ID: 16989319
    [Abstract] [Full Text] [Related]

  • 3. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis.
    Frengova GI, Simova ED, Beshkova DM.
    Z Naturforsch C J Biosci; 2004 Mar; 59(1-2):99-103. PubMed ID: 15018061
    [Abstract] [Full Text] [Related]

  • 4. Carotenoid production by lactoso-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate.
    Frengova GI, Emilina SD, Beshkova DM.
    Z Naturforsch C J Biosci; 2003 Mar; 58(7-8):562-7. PubMed ID: 12939045
    [Abstract] [Full Text] [Related]

  • 5. Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a + Lactobacillus bulgaricus 2-11).
    Simova ED, Frengova GI, Beshkova DM.
    J Appl Microbiol; 2004 Mar; 97(3):512-9. PubMed ID: 15281931
    [Abstract] [Full Text] [Related]

  • 6. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate.
    Simova ED, Frengova GI, Beshkova DM.
    Z Naturforsch C J Biosci; 2003 Mar; 58(3-4):225-9. PubMed ID: 12710733
    [Abstract] [Full Text] [Related]

  • 7. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra.
    Frengova G, Simova E, Beshkova D.
    Appl Biochem Biotechnol; 2004 Mar; 112(3):133-41. PubMed ID: 15007181
    [Abstract] [Full Text] [Related]

  • 8. Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus.
    Frengova G, Simova E, Beshkova D.
    J Ind Microbiol Biotechnol; 1997 Apr; 18(4):272-7. PubMed ID: 9172434
    [Abstract] [Full Text] [Related]

  • 9. Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate.
    Frengova G, Simova E, Pavlova K, Beshkova D, Grigorova D.
    Biotechnol Bioeng; 1994 Oct; 44(8):888-94. PubMed ID: 18618906
    [Abstract] [Full Text] [Related]

  • 10. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste.
    Kot AM, Błażejak S, Kieliszek M, Gientka I, Bryś J, Reczek L, Pobiega K.
    World J Microbiol Biotechnol; 2019 Oct 01; 35(10):157. PubMed ID: 31576445
    [Abstract] [Full Text] [Related]

  • 11. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup.
    Buzzini P.
    J Appl Microbiol; 2001 May 01; 90(5):843-7. PubMed ID: 11348447
    [Abstract] [Full Text] [Related]

  • 12. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P, Gadre RV.
    J Ind Microbiol Biotechnol; 2001 Jun 01; 26(6):327-32. PubMed ID: 11571614
    [Abstract] [Full Text] [Related]

  • 13. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance.
    Frengova GI, Beshkova DM.
    J Ind Microbiol Biotechnol; 2009 Feb 01; 36(2):163-80. PubMed ID: 18982370
    [Abstract] [Full Text] [Related]

  • 14. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus.
    Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N.
    Can J Microbiol; 2007 Aug 01; 53(8):1024-31. PubMed ID: 17898860
    [Abstract] [Full Text] [Related]

  • 15. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P, Gadre RV.
    Lett Appl Microbiol; 2001 Jul 01; 33(1):12-6. PubMed ID: 11442807
    [Abstract] [Full Text] [Related]

  • 16. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev).
    Sperstad S, Lutnaes BF, Stormo SK, Liaaen-Jensen S, Landfald B.
    J Ind Microbiol Biotechnol; 2006 Apr 01; 33(4):269-73. PubMed ID: 16341835
    [Abstract] [Full Text] [Related]

  • 17. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass.
    Breierová E, Gregor T, Marová I, Certík M, Kogan G.
    Chem Biodivers; 2008 Mar 01; 5(3):440-6. PubMed ID: 18357552
    [Abstract] [Full Text] [Related]

  • 18. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts.
    Moliné M, Libkind D, van Broock M.
    Methods Mol Biol; 2012 Mar 01; 898():275-83. PubMed ID: 22711133
    [Abstract] [Full Text] [Related]

  • 19. Centrifugal partition extraction, a new method for direct metabolites recovery from culture broth: case study of torularhodin recovery from Rhodotorula rubra.
    Ungureanu C, Marchal L, Chirvase AA, Foucault A.
    Bioresour Technol; 2013 Mar 01; 132():406-9. PubMed ID: 23260274
    [Abstract] [Full Text] [Related]

  • 20. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them.
    Simova E, Simov Z, Beshkova D, Frengova G, Dimitrov Z, Spasov Z.
    Int J Food Microbiol; 2006 Mar 15; 107(2):112-23. PubMed ID: 16297479
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.