These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 15005169

  • 1. Potential of a Compton camera for high performance scintimammography.
    Zhang L, Rogers WL, Clinthorne NH.
    Phys Med Biol; 2004 Feb 21; 49(4):617-38. PubMed ID: 15005169
    [Abstract] [Full Text] [Related]

  • 2. Performance of a PSPMT based detector for scintimammography.
    Williams MB, Williams MB, Goode AR, Galbis-Reig V, Majewski S, Weisenberger AG, Wojcik R.
    Phys Med Biol; 2000 Mar 21; 45(3):781-800. PubMed ID: 10730971
    [Abstract] [Full Text] [Related]

  • 3. Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging.
    Han L, Rogers WL, Huh SS, Clinthorne N.
    Phys Med Biol; 2008 Dec 21; 53(24):7029-45. PubMed ID: 19015578
    [Abstract] [Full Text] [Related]

  • 4. Compton camera study for high efficiency SPECT and benchmark with Anger system.
    Fontana M, Dauvergne D, Létang JM, Ley JL, Testa É.
    Phys Med Biol; 2017 Nov 09; 62(23):8794-8812. PubMed ID: 28994664
    [Abstract] [Full Text] [Related]

  • 5. The role of Compton background and breast compression on cancer detection in scintimammography.
    Pani R, Scopinaro F, Pellegrini R, Soluri A, Weinberg IN, De Vincentis G.
    Anticancer Res; 1997 Nov 09; 17(3B):1645-9. PubMed ID: 9179211
    [Abstract] [Full Text] [Related]

  • 6. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors.
    Peng H, Levin CS.
    Phys Med Biol; 2010 May 07; 55(9):2761-88. PubMed ID: 20400807
    [Abstract] [Full Text] [Related]

  • 7. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F, Foudray AM, Olcott PD, Levin CS.
    Phys Med Biol; 2007 Jul 07; 52(13):3753-72. PubMed ID: 17664575
    [Abstract] [Full Text] [Related]

  • 8. Scattered radiation in scanning slot mammography.
    Jing Z, Huda W, Walker JK.
    Med Phys; 1998 Jul 07; 25(7 Pt 1):1111-7. PubMed ID: 9682196
    [Abstract] [Full Text] [Related]

  • 9. Monte Carlo simulation of breast imaging using synchrotron radiation.
    Fitousi NT, Delis H, Panayiotakis G.
    Med Phys; 2012 Apr 07; 39(4):2069-77. PubMed ID: 22482628
    [Abstract] [Full Text] [Related]

  • 10. Comparison of small field of view gamma camera systems for scintimammography.
    Hruska CB, O'Connor MK, Collins DA.
    Nucl Med Commun; 2005 May 07; 26(5):441-5. PubMed ID: 15838427
    [Abstract] [Full Text] [Related]

  • 11. Study of the performance of a novel 1 mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation.
    Zhang J, Olcott PD, Chinn G, Foudray AM, Levine CS.
    Med Phys; 2007 Feb 07; 34(2):689-702. PubMed ID: 17388187
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of a small cadmium zinc telluride detector for scintimammography.
    Mueller B, O'Connor MK, Blevis I, Rhodes DJ, Smith R, Collins DA, Phillips SW.
    J Nucl Med; 2003 Apr 07; 44(4):602-9. PubMed ID: 12679406
    [Abstract] [Full Text] [Related]

  • 13. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans.
    Vernekohl D, Ahmad M, Chinn G, Xing L.
    Phys Med Biol; 2016 Dec 21; 61(24):8521-8540. PubMed ID: 27845933
    [Abstract] [Full Text] [Related]

  • 14. Photon energy recovery: a method to improve the effective energy resolution of gamma cameras.
    Hannequin PP, Mas JF.
    J Nucl Med; 1998 Mar 21; 39(3):555-62. PubMed ID: 9529311
    [Abstract] [Full Text] [Related]

  • 15. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R, Schmidt TG.
    Med Phys; 2009 Mar 21; 36(3):788-96. PubMed ID: 19378739
    [Abstract] [Full Text] [Related]

  • 16. Noise evaluation of Compton camera imaging for proton therapy.
    Ortega PG, Torres-Espallardo I, Cerutti F, Ferrari A, Gillam JE, Lacasta C, Llosá G, Oliver JF, Sala PR, Solevi P, Rafecas M.
    Phys Med Biol; 2015 Mar 07; 60(5):1845-63. PubMed ID: 25658644
    [Abstract] [Full Text] [Related]

  • 17. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M, Smits ML, Nijsen JF, Lam MG, Zonnenberg BA, van den Bosch MA, Viergever MA, de Jong HW.
    Med Phys; 2013 Nov 07; 40(11):112502. PubMed ID: 24320461
    [Abstract] [Full Text] [Related]

  • 18. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
    Amato E, Auditore L, Campennì A, Minutoli F, Cucinotta M, Sindoni A, Baldari S.
    Phys Med; 2017 Jun 07; 38():119-121. PubMed ID: 28610692
    [Abstract] [Full Text] [Related]

  • 19. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D, Bitar A, Ferrer L, Lisbona A, Bardiès M.
    Cancer Biother Radiopharm; 2005 Feb 07; 20(1):77-84. PubMed ID: 15778585
    [Abstract] [Full Text] [Related]

  • 20. Optimization of the Compton camera for measuring prompt gamma rays in boron neutron capture therapy.
    Gong CH, Tang XB, Shu DY, Yu HY, Geng CR.
    Appl Radiat Isot; 2017 Jun 07; 124():62-67. PubMed ID: 28342380
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.