These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
635 related items for PubMed ID: 15010316
1. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. Dzierzbicki P, Koprowski P, Fikus MU, Malc E, Ciesla Z. DNA Repair (Amst); 2004 Apr 01; 3(4):403-11. PubMed ID: 15010316 [Abstract] [Full Text] [Related]
2. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. Kaniak A, Dzierzbicki P, Rogowska AT, Malc E, Fikus M, Ciesla Z. DNA Repair (Amst); 2009 Mar 01; 8(3):318-29. PubMed ID: 19056520 [Abstract] [Full Text] [Related]
3. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae. Malc E, Dzierzbicki P, Kaniak A, Skoneczna A, Ciesla Z. Mutat Res; 2009 Oct 02; 669(1-2):95-103. PubMed ID: 19467248 [Abstract] [Full Text] [Related]
4. A dominant mitochondrial mutator phenotype of Saccharomyces cerevisiae conferred by msh1 alleles altered in the sequence encoding the ATP-binding domain. Koprowski P, Fikus MU, Mieczkowski P, Ciesla Z. Mol Genet Genomics; 2002 Feb 02; 266(6):988-94. PubMed ID: 11862493 [Abstract] [Full Text] [Related]
5. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Scott AD, Neishabury M, Jones DH, Reed SH, Boiteux S, Waters R. Yeast; 1999 Feb 02; 15(3):205-18. PubMed ID: 10077187 [Abstract] [Full Text] [Related]
6. Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome. Vongsamphanh R, Wagner JR, Ramotar D. DNA Repair (Amst); 2006 Feb 03; 5(2):235-42. PubMed ID: 16293446 [Abstract] [Full Text] [Related]
7. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. Phadnis N, Mehta R, Meednu N, Sia EA. DNA Repair (Amst); 2006 Jul 13; 5(7):829-39. PubMed ID: 16730479 [Abstract] [Full Text] [Related]
8. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. Mutat Res; 2012 Dec 13; 740(1-2):21-33. PubMed ID: 23276591 [Abstract] [Full Text] [Related]
9. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A, Bohr VA. Cancer Res; 2001 Jul 15; 61(14):5378-81. PubMed ID: 11454679 [Abstract] [Full Text] [Related]
10. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice. Trapp C, McCullough AK, Epe B. Mutat Res; 2007 Dec 01; 625(1-2):155-63. PubMed ID: 17675188 [Abstract] [Full Text] [Related]
11. Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae. Mookerjee SA, Sia EA. Mutat Res; 2006 Mar 20; 595(1-2):91-106. PubMed ID: 16337661 [Abstract] [Full Text] [Related]
12. The yeast MSH1 gene is not involved in DNA repair or recombination during meiosis. Sia EA, Kirkpatrick DT. DNA Repair (Amst); 2005 Feb 03; 4(2):253-61. PubMed ID: 15590333 [Abstract] [Full Text] [Related]
13. Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper. Melo RG, Leitão AC, Pádula M. Yeast; 2004 Sep 03; 21(12):991-1003. PubMed ID: 15449310 [Abstract] [Full Text] [Related]
14. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. Machado CR, Praekelt UM, de Oliveira RC, Barbosa AC, Byrne KL, Meacock PA, Menck CF. J Mol Biol; 1997 Oct 17; 273(1):114-21. PubMed ID: 9367751 [Abstract] [Full Text] [Related]
15. High levels of the mitochondrial large ribosomal subunit protein 40 prevent loss of mitochondrial DNA in null mmf1 Saccharomyces cerevisiae cells. Accardi R, Oxelmark E, Jauniaux N, de Pinto V, Marchini A, Tommasino M. Yeast; 2004 May 17; 21(7):539-48. PubMed ID: 15164357 [Abstract] [Full Text] [Related]
16. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Osterod M, Larsen E, Le Page F, Hengstler JG, Van Der Horst GT, Boiteux S, Klungland A, Epe B. Oncogene; 2002 Nov 28; 21(54):8232-9. PubMed ID: 12447686 [Abstract] [Full Text] [Related]
17. Functional cooperation of Ogg1 and Mutyh in preventing G: C-->T: a transversions in mice. Isogawa A. Fukuoka Igaku Zasshi; 2004 Jan 28; 95(1):17-30. PubMed ID: 15031996 [Abstract] [Full Text] [Related]
18. Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2'-deoxyguanosine. Smart DJ, Chipman JK, Hodges NJ. DNA Repair (Amst); 2006 Nov 08; 5(11):1337-45. PubMed ID: 16861056 [Abstract] [Full Text] [Related]
19. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Reenan RA, Kolodner RD. Genetics; 1992 Dec 08; 132(4):975-85. PubMed ID: 1334021 [Abstract] [Full Text] [Related]
20. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Akbari M, Otterlei M, Peña-Diaz J, Krokan HE. Neuroscience; 2007 Apr 14; 145(4):1201-12. PubMed ID: 17101234 [Abstract] [Full Text] [Related] Page: [Next] [New Search]