These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 15012155
1. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea. Billault I, Mantle PG, Robins RJ. J Am Chem Soc; 2004 Mar 17; 126(10):3250-6. PubMed ID: 15012155 [Abstract] [Full Text] [Related]
2. Final report on the safety assessment of Ricinus Communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate. Int J Toxicol; 2007 Mar 17; 26 Suppl 3():31-77. PubMed ID: 18080873 [Abstract] [Full Text] [Related]
3. Biochemical aspects of castor oil biosynthesis. McKeon TA, Chen GQ, Lin JT. Biochem Soc Trans; 2000 Dec 17; 28(6):972-4. PubMed ID: 11171276 [Abstract] [Full Text] [Related]
4. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S. Biochem J; 1991 Dec 01; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126 [Abstract] [Full Text] [Related]
5. Crucial enzymes in the hydroxylated triacylglycerol-ricinoleate biosynthesis pathway of castor bean. Chen Y, Liu L, Tian X, Di J, Su Y, Huang F, Chen Y. Curr Protein Pept Sci; 2014 Dec 01; 15(6):572-82. PubMed ID: 25059327 [Abstract] [Full Text] [Related]
6. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M, Sánchez R, Salas JJ, Garcés R, Martínez-Force E. Planta; 2016 Jul 01; 244(1):245-58. PubMed ID: 27056057 [Abstract] [Full Text] [Related]
7. Biosynthesis of ricinoleate in castor oil. McKeon TA, Lin JT, Stafford AE. Adv Exp Med Biol; 1999 Jul 01; 464():37-47. PubMed ID: 10335384 [Abstract] [Full Text] [Related]
8. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents. Lesot P, Baillif V, Billault I. Anal Chem; 2008 Apr 15; 80(8):2963-72. PubMed ID: 18327921 [Abstract] [Full Text] [Related]
9. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB. Plant Cell Physiol; 2011 Jun 15; 52(6):983-93. PubMed ID: 21659329 [Abstract] [Full Text] [Related]
10. Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations. Lin JT, Chen JM, Liao LP, McKeon TA. J Agric Food Chem; 2002 Aug 28; 50(18):5077-81. PubMed ID: 12188611 [Abstract] [Full Text] [Related]
11. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase. Lin JT, Woodruff CL, Lagouche OJ, McKeon TA, Stafford AE, Goodrich-Tanrikulu M, Singleton JA, Haney CA. Lipids; 1998 Jan 28; 33(1):59-69. PubMed ID: 9470174 [Abstract] [Full Text] [Related]
12. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. Mavraganis I, Meesapyodsuk D, Vrinten P, Smith M, Qiu X. Appl Environ Microbiol; 2010 Feb 28; 76(4):1135-42. PubMed ID: 20023082 [Abstract] [Full Text] [Related]
13. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Broun P, Somerville C. Plant Physiol; 1997 Mar 28; 113(3):933-42. PubMed ID: 9085577 [Abstract] [Full Text] [Related]
14. Toxicology and pharmacology of sodium ricinoleate. Burdock GA, Carabin IG, Griffiths JC. Food Chem Toxicol; 2006 Oct 28; 44(10):1689-98. PubMed ID: 16831502 [Abstract] [Full Text] [Related]
15. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Sturtevant D, Romsdahl TB, Yu XH, Burks DJ, Azad RK, Shanklin J, Chapman KD. Metabolomics; 2019 Jan 03; 15(1):6. PubMed ID: 30830477 [Abstract] [Full Text] [Related]
16. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant. Zhou XR, Singh SP, Green AG. Phytochemistry; 2013 Aug 03; 92():42-8. PubMed ID: 23747094 [Abstract] [Full Text] [Related]
17. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Tomosugi M, Ichihara K, Saito K. Planta; 2006 Jan 03; 223(2):349-58. PubMed ID: 16133210 [Abstract] [Full Text] [Related]