These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 15017694

  • 41. Condylar growth and mandibular positioning with stepwise vs maximum advancement.
    Hägg U, Rabie AB, Bendeus M, Wong RW, Wey MC, Du X, Peng J.
    Am J Orthod Dentofacial Orthop; 2008 Oct; 134(4):525-36. PubMed ID: 18929270
    [Abstract] [Full Text] [Related]

  • 42. Regeneration of condyle with a functional appliance.
    Fujita T, Hayashi H, Shirakura M, Tsuka Y, Fujii E, Kawata T, Kaku M, Ohtani J, Motokawa M, Tanne K.
    J Dent Res; 2013 Apr; 92(4):322-8. PubMed ID: 23439718
    [Abstract] [Full Text] [Related]

  • 43. Induced mandibular condylar growth in a sheep model after functional appliance treatment.
    Ma B, Sampson W, Fazzalari N, Wilson D, Wiebkin O.
    Aust Orthod J; 2001 Nov; 17(2):81-8. PubMed ID: 11862870
    [Abstract] [Full Text] [Related]

  • 44. [Expression of bone histomorphometry parameters in rabbit condyle during mandibular forward positioning].
    Zhan J, Gu ZY.
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 May; 48(5):303-7. PubMed ID: 24004628
    [Abstract] [Full Text] [Related]

  • 45. Immunohistochemical localization of matrix metalloproteinase 13 (MMP-13) in mouse mandibular condylar cartilage.
    Ohkubo K, Shimokawa H, Ogawa T, Suzuki S, Fukada K, Ohya K, Ohyama K.
    J Med Dent Sci; 2003 Sep; 50(3):203-11. PubMed ID: 15074358
    [Abstract] [Full Text] [Related]

  • 46. Indian hedgehog: a mechanotransduction mediator in condylar cartilage.
    Tang GH, Rabie AB, Hägg U.
    J Dent Res; 2004 May; 83(5):434-8. PubMed ID: 15111639
    [Abstract] [Full Text] [Related]

  • 47. Effects of bisphosphonate on the endochondral bone formation of the mandibular condyle.
    Kim MS, Jung SY, Kang JH, Kim HJ, Ko HM, Jung JY, Koh JT, Kim WJ, Kim SM, Lee EJ, Kim SH.
    Anat Histol Embryol; 2009 Oct; 38(5):321-6. PubMed ID: 19681835
    [Abstract] [Full Text] [Related]

  • 48. Mechanical stress promotes matrix synthesis of mandibular condylar cartilage via the RKIP-ERK pathway.
    Sun L, Zhao J, Wang H, Pan Y, Wang L, Zhang WB.
    J Mol Histol; 2017 Dec; 48(5-6):437-446. PubMed ID: 29119279
    [Abstract] [Full Text] [Related]

  • 49. Runx2 regulates endochondral ossification in condyle during mandibular advancement.
    Tang GH, Rabie AB.
    J Dent Res; 2005 Feb; 84(2):166-71. PubMed ID: 15668335
    [Abstract] [Full Text] [Related]

  • 50. [Image analysis of condylar cartilaginous adaptation to mandibular protrusion in rats].
    Zhao Z, Rabie AB, Urban H, Shen G.
    Hua Xi Kou Qiang Yi Xue Za Zhi; 1999 May; 17(2):155-8. PubMed ID: 12539714
    [Abstract] [Full Text] [Related]

  • 51. Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes.
    Papachristou D, Pirttiniemi P, Kantomaa T, Agnantis N, Basdra EK.
    Eur J Orthod; 2006 Feb; 28(1):20-6. PubMed ID: 16373449
    [Abstract] [Full Text] [Related]

  • 52. Identification of temporal pattern of mandibular condylar growth: a molecular and biochemical experiment.
    Shen G, Hägg U, Rabie AB, Kaluarachchi K.
    Orthod Craniofac Res; 2005 May; 8(2):114-22. PubMed ID: 15888124
    [Abstract] [Full Text] [Related]

  • 53. Effects of mandibular advancement on growth after condylectomy.
    Nakano M, Fujita T, Ohtani J, Kawata T, Kaku M, Motokawa M, Tsuka N, Hayashi H, Tanne K.
    J Dent Res; 2009 Mar; 88(3):261-5. PubMed ID: 19329461
    [Abstract] [Full Text] [Related]

  • 54. The effects of low-level laser therapy on condylar growth with a mandibular advancement appliance in rats.
    Okşayan R, Sökücü O, Üçüncü N.
    Photomed Laser Surg; 2015 May; 33(5):252-7. PubMed ID: 25867096
    [Abstract] [Full Text] [Related]

  • 55. Identification of differentially expressed genes in mandibular condylar and tibial growth cartilages using laser microdissection and fluorescent differential display: chondromodulin-I (ChM-1) and tenomodulin (TeM) are differentially expressed in mandibular condylar and other growth cartilages.
    Watahiki J, Yamaguchi T, Enomoto A, Irie T, Yoshie K, Tachikawa T, Maki K.
    Bone; 2008 Jun; 42(6):1053-60. PubMed ID: 18337200
    [Abstract] [Full Text] [Related]

  • 56. Differential expression of IGF1, IGFR1 and IGFBP3 in mandibular condylar cartilage between male and female rats applied with malocclusion.
    Yu S, Sun L, Liu L, Jiao K, Wang M.
    J Oral Rehabil; 2012 Oct; 39(10):727-36. PubMed ID: 22758598
    [Abstract] [Full Text] [Related]

  • 57. Influence of extraoral lateral force loading on the mandible in the mandibular development of growing rats.
    Ishii T, Yamaguchi H.
    Am J Orthod Dentofacial Orthop; 2008 Dec; 134(6):782-91. PubMed ID: 19061805
    [Abstract] [Full Text] [Related]

  • 58. Effect of mechanical pressure on the thickness and collagen synthesis of mandibular cartilage and the contributions of G proteins.
    Zhang M, Chen FM, Chen YJ, Wu S, Lv X, Zhao RN.
    Mol Cell Biomech; 2011 Mar; 8(1):43-60. PubMed ID: 21391327
    [Abstract] [Full Text] [Related]

  • 59. [Effect of different mechanical loading on the expression of Notch signaling pathways in growing rabbits' condylar cartilage].
    Yan F, Feng JY, Mou TC, Liu CY, Sun Z, Shi CJ.
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Mar 09; 52(3):176-181. PubMed ID: 28279056
    [Abstract] [Full Text] [Related]

  • 60. A mandibular propulsive appliance modulates collagen-binding integrins distribution in the young rat condylar cartilage.
    Marques MR, Hajjar D, Oliveira Crema V, Kimura ET, Santos MF.
    Biorheology; 2006 Mar 09; 43(3,4):293-302. PubMed ID: 16912402
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.