These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 15018099
21. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Omidi-Mirzaei H, Azarfar A, Mirzaei M, Kiani A, Ghaffari MH. J Dairy Sci; 2018 May; 101(5):4143-4157. PubMed ID: 29477531 [Abstract] [Full Text] [Related]
22. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. Oelker ER, Reveneau C, Firkins JL. J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286 [Abstract] [Full Text] [Related]
23. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. Callaway TR, Martin SA. J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583 [Abstract] [Full Text] [Related]
24. Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Bell NL, Anderson RC, Callaway TR, Franco MO, Sawyer JE, Wickersham TA. J Anim Sci; 2017 Jun; 95(6):2736-2746. PubMed ID: 28727060 [Abstract] [Full Text] [Related]
25. Effect of sodium bicarbonate addition to alfalfa hay-based diets on digestibility of dietary fractions and rumen characteristics. DePeters EJ, Fredeen AH, Bath DL, Smith NE. J Dairy Sci; 1984 Oct; 67(10):2344-55. PubMed ID: 6094626 [Abstract] [Full Text] [Related]
26. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH. Yang WZ, Beauchemin KA. J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723 [Abstract] [Full Text] [Related]
27. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Williams PE, Tait CA, Innes GM, Newbold CJ. J Anim Sci; 1991 Jul; 69(7):3016-26. PubMed ID: 1885411 [Abstract] [Full Text] [Related]
28. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Martínez-Fernández G, Abecia L, Arco A, Cantalapiedra-Hijar G, Martín-García AI, Molina-Alcaide E, Kindermann M, Duval S, Yáñez-Ruiz DR. J Dairy Sci; 2014 Jul; 97(6):3790-9. PubMed ID: 24731636 [Abstract] [Full Text] [Related]
38. Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal microorganisms in vitro. Martin SA, Nisbet DJ. J Anim Sci; 1990 Jul; 68(7):2142-9. PubMed ID: 2384404 [Abstract] [Full Text] [Related]
39. Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. Lila ZA, Mohammed N, Yasui T, Kurokawa Y, Kanda S, Itabashi H. J Anim Sci; 2004 Jun; 82(6):1847-54. PubMed ID: 15217013 [Abstract] [Full Text] [Related]
40. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. Martin SA, Streeter MN, Nisbet DJ, Hill GM, Williams SE. J Anim Sci; 1999 Apr; 77(4):1008-15. PubMed ID: 10328369 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]