These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 15019833

  • 1. Acetylcholine-induced calcium signalling in adrenaline- and noradrenaline-containing adrenal chromaffin cells.
    Zaika OL, Pochynyuk OM, Kostyuk PG, Yavorskaya EN, Lukyanetz EA.
    Arch Biochem Biophys; 2004 Apr 01; 424(1):23-32. PubMed ID: 15019833
    [Abstract] [Full Text] [Related]

  • 2. Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine.
    González-Rubio JM, García de Diego AM, Egea J, Olivares R, Rojo J, Gandía L, García AG, Hernández-Guijo JM.
    Eur J Pharmacol; 2006 Mar 27; 535(1-3):13-24. PubMed ID: 16530180
    [Abstract] [Full Text] [Related]

  • 3. Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells.
    Wu PC, Fann MJ, Kao LS.
    J Neurochem; 2010 Mar 27; 112(5):1210-22. PubMed ID: 20002295
    [Abstract] [Full Text] [Related]

  • 4. Nicotinic and muscarinic components in acetylcholine stimulation of porcine adrenal medullary cells.
    Nassar-Gentina V, Catalán L, Luxoro M.
    Mol Cell Biochem; 1997 Apr 27; 169(1-2):107-13. PubMed ID: 9089637
    [Abstract] [Full Text] [Related]

  • 5. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A, Albillos A.
    J Neurochem; 2007 Dec 27; 103(6):2281-90. PubMed ID: 17883397
    [Abstract] [Full Text] [Related]

  • 6. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV, He W, Currie KP.
    J Pharmacol Exp Ther; 2006 Mar 27; 316(3):1165-74. PubMed ID: 16280412
    [Abstract] [Full Text] [Related]

  • 7. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells.
    Akaike A, Mine Y, Sasa M, Takaori S.
    J Pharmacol Exp Ther; 1990 Oct 27; 255(1):333-9. PubMed ID: 2213564
    [Abstract] [Full Text] [Related]

  • 8. Influence of lobeline on catecholamine release from the isolated perfused rat adrenal gland.
    Lim DY, Kim YS, Miwa S.
    Auton Neurosci; 2004 Jan 30; 110(1):27-35. PubMed ID: 14766322
    [Abstract] [Full Text] [Related]

  • 9. Nicotinic and muscarinic acetylcholine receptors are essential for the long-term response of tyrosine hydroxylase gene expression to chronic nicotine treatment in rat adrenal medulla.
    Yoshimura R, Xu L, Sun B, Tank AW.
    Brain Res Mol Brain Res; 2004 Jul 26; 126(2):188-97. PubMed ID: 15249143
    [Abstract] [Full Text] [Related]

  • 10. Recovery of deficient cholinergic calcium signaling by adenosine in cultured rat cortical astrocytes.
    Ferroni S, Marchini C, Ogata T, Schubert P.
    J Neurosci Res; 2002 Jun 01; 68(5):615-21. PubMed ID: 12111851
    [Abstract] [Full Text] [Related]

  • 11. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY, Park HG, Miwa S.
    Auton Neurosci; 2006 Jul 30; 128(1-2):37-47. PubMed ID: 16461015
    [Abstract] [Full Text] [Related]

  • 12. The release of 3H-1-methyl-4-phenylpyridinium from bovine adrenal chromaffin cells is modulated by somatostatin.
    Ribeiro L, Martel F, Azevedo I.
    Regul Pept; 2006 Dec 10; 137(3):107-13. PubMed ID: 16846655
    [Abstract] [Full Text] [Related]

  • 13. Characterization of catecholamine release from deer adrenal medullary chromaffin cells.
    Douglas SA, Stevenson KE, Knowles PJ, Bunn SJ.
    Neurosci Lett; 2008 Nov 07; 445(1):126-9. PubMed ID: 18775475
    [Abstract] [Full Text] [Related]

  • 14. Muscarinic and nicotinic receptor-mediated Ca2+ dynamics in rat adrenal chromaffin cells during development.
    Oomori Y, Habara Y, Kanno T.
    Cell Tissue Res; 1998 Oct 07; 294(1):109-23. PubMed ID: 9724461
    [Abstract] [Full Text] [Related]

  • 15. A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways.
    Evinger MJ, Ernsberger P, Regunathan S, Joh TH, Reis DJ.
    J Neurosci; 1994 Apr 07; 14(4):2106-16. PubMed ID: 7512633
    [Abstract] [Full Text] [Related]

  • 16. Effects of substance P on nicotine-induced intracellular Ca2+ dynamics in bovine adrenal chromaffin cells.
    Suzuki S, Habara Y, Kanno T.
    Jpn J Vet Res; 1999 Aug 07; 47(1-2):3-12. PubMed ID: 10810557
    [Abstract] [Full Text] [Related]

  • 17. Further evidence for nicotinic and muscarinic receptors and their interaction in dog adrenal medulla.
    Tsujimoto A, Nishikawa T.
    Eur J Pharmacol; 1975 Dec 07; 34(2):337-44. PubMed ID: 1234552
    [Abstract] [Full Text] [Related]

  • 18. Ca2+ permeability through rat cloned alpha9-containing nicotinic acetylcholine receptors.
    Fucile S, Sucapane A, Eusebi F.
    Cell Calcium; 2006 Apr 07; 39(4):349-55. PubMed ID: 16451809
    [Abstract] [Full Text] [Related]

  • 19. A choline-evoked [Ca2+]c signal causes catecholamine release and hyperpolarization of chromaffin cells.
    Fuentealba J, Olivares R, Alés E, Tapia L, Rojo J, Arroyo G, Aldea M, Criado M, Gandía L, García AG.
    FASEB J; 2004 Sep 07; 18(12):1468-70. PubMed ID: 15231719
    [Abstract] [Full Text] [Related]

  • 20. Modes of secretagogue-induced [Ca(2+)](i) responses in individual chromaffin cells of the perfused rat adrenal medulla.
    Warashina A, Satoh Y.
    Cell Calcium; 2001 Dec 07; 30(6):395-401. PubMed ID: 11728134
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.