These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 15020420

  • 1. Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae.
    Joshi R, Venkatesh K, Srinivas R, Nair S, Hasan G.
    Genetics; 2004 Jan; 166(1):225-36. PubMed ID: 15020420
    [Abstract] [Full Text] [Related]

  • 2. Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila.
    Venkatesh K, Siddhartha G, Joshi R, Patel S, Hasan G.
    Genetics; 2001 May; 158(1):309-18. PubMed ID: 11333238
    [Abstract] [Full Text] [Related]

  • 3. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release.
    Venkatesh K, Hasan G.
    Curr Biol; 1997 Jul 01; 7(7):500-9. PubMed ID: 9273145
    [Abstract] [Full Text] [Related]

  • 4. NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function.
    Pollock VP, Radford JC, Pyne S, Hasan G, Dow JA, Davies SA.
    J Exp Biol; 2003 Mar 01; 206(Pt 5):901-11. PubMed ID: 12547945
    [Abstract] [Full Text] [Related]

  • 5. Inositol 1,4,5- trisphosphate receptor function in Drosophila insulin producing cells.
    Agrawal N, Padmanabhan N, Hasan G.
    PLoS One; 2009 Aug 14; 4(8):e6652. PubMed ID: 19680544
    [Abstract] [Full Text] [Related]

  • 6. The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae.
    Deshpande M, Venkatesh K, Rodrigues V, Hasan G.
    J Neurobiol; 2000 Jun 05; 43(3):282-8. PubMed ID: 10842240
    [Abstract] [Full Text] [Related]

  • 7. Ectopic expression of a Drosophila InsP(3)R channel mutant has dominant-negative effects in vivo.
    Srikanth S, Banerjee S, Hasan G.
    Cell Calcium; 2006 Feb 05; 39(2):187-96. PubMed ID: 16325255
    [Abstract] [Full Text] [Related]

  • 8. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila.
    Banerjee S, Lee J, Venkatesh K, Wu CF, Hasan G.
    J Neurosci; 2004 Sep 08; 24(36):7869-78. PubMed ID: 15356199
    [Abstract] [Full Text] [Related]

  • 9. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants.
    Srikanth S, Wang Z, Tu H, Nair S, Mathew MK, Hasan G, Bezprozvanny I.
    Biophys J; 2004 Jun 08; 86(6):3634-46. PubMed ID: 15189860
    [Abstract] [Full Text] [Related]

  • 10. Inositol 1,4,5-trisphosphate transduction cascade in taste reception of the fleshfly, Boettcherisca peregrina.
    Koganezawa M, Shimada I.
    J Neurobiol; 2002 Apr 08; 51(1):66-83. PubMed ID: 11920729
    [Abstract] [Full Text] [Related]

  • 11. Functional properties of a pore mutant in the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor.
    Srikanth S, Wang Z, Hasan G, Bezprozvanny I.
    FEBS Lett; 2004 Sep 24; 575(1-3):95-8. PubMed ID: 15388340
    [Abstract] [Full Text] [Related]

  • 12. Patterns of gene expression in Drosophila InsP3 receptor mutant larvae reveal a role for InsP3 signaling in carbohydrate and energy metabolism.
    Kumar S, Dey D, Hasan G.
    PLoS One; 2011 Sep 24; 6(8):e24105. PubMed ID: 21901161
    [Abstract] [Full Text] [Related]

  • 13. Sequencing and exon mapping of the inositol 1,4,5-trisphosphate receptor cDNA from Drosophila embryos suggests the presence of differentially regulated forms of RNA and protein.
    Sinha M, Hasan G.
    Gene; 1999 Jun 11; 233(1-2):271-6. PubMed ID: 10375644
    [Abstract] [Full Text] [Related]

  • 14. Essential roles for the Dhr78 orphan nuclear receptor during molting of the Drosophila tracheal system.
    Astle J, Kozlova T, Thummel CS.
    Insect Biochem Mol Biol; 2003 Dec 11; 33(12):1201-9. PubMed ID: 14599492
    [Abstract] [Full Text] [Related]

  • 15. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction.
    Chorna-Ornan I, Joel-Almagor T, Ben-Ami HC, Frechter S, Gillo B, Selinger Z, Gill DL, Minke B.
    J Neurosci; 2001 Apr 15; 21(8):2622-9. PubMed ID: 11306615
    [Abstract] [Full Text] [Related]

  • 16. Compensation of inositol 1,4,5-trisphosphate receptor function by altering sarco-endoplasmic reticulum calcium ATPase activity in the Drosophila flight circuit.
    Banerjee S, Joshi R, Venkiteswaran G, Agrawal N, Srikanth S, Alam F, Hasan G.
    J Neurosci; 2006 Aug 09; 26(32):8278-88. PubMed ID: 16899722
    [Abstract] [Full Text] [Related]

  • 17. Functional complementation of Drosophila itpr mutants by rat Itpr1.
    Chakraborty S, Hasan G.
    J Neurogenet; 2012 Sep 09; 26(3-4):328-37. PubMed ID: 22817477
    [Abstract] [Full Text] [Related]

  • 18. Inositol 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP(3) are blocked by a specific antibody to the type I receptor.
    Goud PT, Goud AP, Leybaert L, Van Oostveldt P, Mikoshiba K, Diamond MP, Dhont M.
    Mol Hum Reprod; 2002 Oct 09; 8(10):912-8. PubMed ID: 12356940
    [Abstract] [Full Text] [Related]

  • 19. Functional properties of Drosophila inositol trisphosphate receptors.
    Swatton JE, Morris SA, Wissing F, Taylor CW.
    Biochem J; 2001 Oct 15; 359(Pt 2):435-41. PubMed ID: 11583592
    [Abstract] [Full Text] [Related]

  • 20. The DHR78 nuclear receptor is required for ecdysteroid signaling during the onset of Drosophila metamorphosis.
    Fisk GJ, Thummel CS.
    Cell; 1998 May 15; 93(4):543-55. PubMed ID: 9604930
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.