These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 15035368

  • 1. Optimization of DNA extraction and molecular detection of Cryptosporidium oocysts in natural mineral water sources.
    Nichols RA, Smith HV.
    J Food Prot; 2004 Mar; 67(3):524-32. PubMed ID: 15035368
    [Abstract] [Full Text] [Related]

  • 2. Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay.
    Nichols RA, Campbell BM, Smith HV.
    Appl Environ Microbiol; 2003 Jul; 69(7):4183-9. PubMed ID: 12839797
    [Abstract] [Full Text] [Related]

  • 3. A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigations.
    Nichols RA, Moore JE, Smith HV.
    J Microbiol Methods; 2006 Jun; 65(3):512-24. PubMed ID: 16290112
    [Abstract] [Full Text] [Related]

  • 4. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP.
    Xiao L, Lal AA, Jiang J.
    Methods Mol Biol; 2004 Jun; 268():163-76. PubMed ID: 15156028
    [Abstract] [Full Text] [Related]

  • 5. Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring.
    Nichols RA, Campbell BM, Smith HV.
    Appl Environ Microbiol; 2006 Aug; 72(8):5428-35. PubMed ID: 16885295
    [Abstract] [Full Text] [Related]

  • 6. Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices.
    Manore AJW, Harper SL, Aguilar B, Weese JS, Shapiro K.
    J Microbiol Methods; 2019 Jan; 156():1-4. PubMed ID: 30468750
    [Abstract] [Full Text] [Related]

  • 7. The sensitivity of PCR detection of Cryptosporidium oocysts in fecal samples using two DNA extraction methods.
    Lindergard G, Nydam DV, Wade SE, Schaaf SL, Mohammed HO.
    Mol Diagn; 2003 Jan; 7(3-4):147-53. PubMed ID: 15068384
    [Abstract] [Full Text] [Related]

  • 8. Survival of Cryptosporidium parvum oocysts after prolonged exposure to still natural mineral waters.
    Nichols RA, Paton CA, Smith HV.
    J Food Prot; 2004 Mar; 67(3):517-23. PubMed ID: 15035367
    [Abstract] [Full Text] [Related]

  • 9. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
    Yang R, Murphy C, Song Y, Ng-Hublin J, Estcourt A, Hijjawi N, Chalmers R, Hadfield S, Bath A, Gordon C, Ryan U.
    Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A simple method for extracting DNA from Cryptosporidium oocysts using the anionic surfactant LSS.
    Sekikawa T, Kawasaki Y, Katayama Y, Iwahori K.
    N Biotechnol; 2011 Dec 15; 29(1):139-43. PubMed ID: 21924387
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater.
    Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T.
    Sci Total Environ; 2024 Oct 15; 947():174219. PubMed ID: 38917908
    [Abstract] [Full Text] [Related]

  • 13. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples.
    Leetz AS, Sotiriadou I, Ongerth J, Karanis P.
    Parasitol Res; 2007 Sep 15; 101(4):951-62. PubMed ID: 17514380
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts.
    Fontaine M, Guillot E.
    FEMS Microbiol Lett; 2003 Sep 26; 226(2):237-43. PubMed ID: 14553917
    [Abstract] [Full Text] [Related]

  • 16. Rapid and sensitive detection of single cryptosporidium oocysts from archived glass slides.
    Sunnotel O, Snelling WJ, Xiao L, Moule K, Moore JE, Millar BC, Dooley JS, Lowery CJ.
    J Clin Microbiol; 2006 Sep 26; 44(9):3285-91. PubMed ID: 16954262
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK, Robertson LJ.
    Exp Parasitol; 2017 Jan 26; 172():61-67. PubMed ID: 27998735
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.
    Yang R, Paparini A, Monis P, Ryan U.
    Int J Parasitol; 2014 Dec 26; 44(14):1105-13. PubMed ID: 25229177
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.