These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 15049697

  • 1. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL.
    Bamm VV, Tsemakhovich VA, Shaklai M, Shaklai N.
    Biochemistry; 2004 Apr 06; 43(13):3899-906. PubMed ID: 15049697
    [Abstract] [Full Text] [Related]

  • 2. Ligand-dependent inequivalence of the α and β subunits of ferric human hemoglobin bound to haptoglobin.
    Ascenzi P, De Simone G, Ciaccio C, Coletta M.
    J Inorg Biochem; 2020 Jan 06; 202():110814. PubMed ID: 31733428
    [Abstract] [Full Text] [Related]

  • 3. Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2.
    Ascenzi P, De Simone G, Polticelli F, Gioia M, Coletta M.
    J Biol Inorg Chem; 2018 May 06; 23(3):437-445. PubMed ID: 29605886
    [Abstract] [Full Text] [Related]

  • 4. Haptoglobin: From hemoglobin scavenging to human health.
    di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P.
    Mol Aspects Med; 2020 Jun 06; 73():100851. PubMed ID: 32660714
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Fluoride and azide binding to ferric human hemoglobin:haptoglobin complexes highlights the ligand-dependent inequivalence of the α and β hemoglobin chains.
    Ascenzi P, di Masi A, De Simone G, Gioia M, Coletta M.
    J Biol Inorg Chem; 2019 Mar 06; 24(2):247-255. PubMed ID: 30706146
    [Abstract] [Full Text] [Related]

  • 9. In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease.
    Asleh R, Levy AP.
    Vasc Health Risk Manag; 2005 Mar 06; 1(1):19-28. PubMed ID: 17319095
    [Abstract] [Full Text] [Related]

  • 10. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation.
    Miller YI, Smith A, Morgan WT, Shaklai N.
    Biochemistry; 1996 Oct 08; 35(40):13112-7. PubMed ID: 8855948
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease.
    Yalamanoglu A, Deuel JW, Hunt RC, Baek JH, Hassell K, Redinius K, Irwin DC, Schaer DJ, Buehler PW.
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov 01; 315(5):L765-L774. PubMed ID: 30047285
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE, Silkstone GGA, Simons M, Rajagopal B, Syrett N, Shaik T, Gretton S, Welbourn E, Bülow L, Eriksson NL, Ronda L, Mozzarelli A, Eke A, Mathe D, Reeder BJ.
    Free Radic Biol Med; 2019 Apr 01; 134():106-118. PubMed ID: 30594736
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.