These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 15054067

  • 1. Neural correlates of change detection and change blindness in a working memory task.
    Pessoa L, Ungerleider LG.
    Cereb Cortex; 2004 May; 14(5):511-20. PubMed ID: 15054067
    [Abstract] [Full Text] [Related]

  • 2. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY, Kuo BC, Liu HL.
    Brain Res; 2007 Jan 26; 1130(1):146-57. PubMed ID: 17173876
    [Abstract] [Full Text] [Related]

  • 3. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.
    Deiber MP, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibañez V, Giannakopoulos P.
    J Cogn Neurosci; 2007 Jan 26; 19(1):158-72. PubMed ID: 17214572
    [Abstract] [Full Text] [Related]

  • 4. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 5. Functional topography of working memory for face or voice identity.
    Rämä P, Courtney SM.
    Neuroimage; 2005 Jan 01; 24(1):224-34. PubMed ID: 15588614
    [Abstract] [Full Text] [Related]

  • 6. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB, Luks TL, Simpson GV, Glaholt M, McIntosh AR.
    Neuroimage; 2006 Feb 15; 29(4):1192-202. PubMed ID: 16236528
    [Abstract] [Full Text] [Related]

  • 7. The neural basis of executive function in working memory: an fMRI study based on individual differences.
    Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H.
    Neuroimage; 2004 Feb 15; 21(2):623-31. PubMed ID: 14980565
    [Abstract] [Full Text] [Related]

  • 8. On the neural basis of focused and divided attention.
    Nebel K, Wiese H, Stude P, de Greiff A, Diener HC, Keidel M.
    Brain Res Cogn Brain Res; 2005 Dec 15; 25(3):760-76. PubMed ID: 16337110
    [Abstract] [Full Text] [Related]

  • 9. Common neural substrates for visual working memory and attention.
    Mayer JS, Bittner RA, Nikolić D, Bledowski C, Goebel R, Linden DE.
    Neuroimage; 2007 Jun 15; 36(2):441-53. PubMed ID: 17462914
    [Abstract] [Full Text] [Related]

  • 10. Multiple neuronal networks mediate sustained attention.
    Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA.
    J Cogn Neurosci; 2003 Oct 01; 15(7):1028-38. PubMed ID: 14614813
    [Abstract] [Full Text] [Related]

  • 11. Neural basis for dynamic updating of object representation in visual working memory.
    Takahama S, Miyauchi S, Saiki J.
    Neuroimage; 2010 Feb 15; 49(4):3394-403. PubMed ID: 19932754
    [Abstract] [Full Text] [Related]

  • 12. Enhanced temporal non-linearities in human object-related occipito-temporal cortex.
    Mukamel R, Harel M, Hendler T, Malach R.
    Cereb Cortex; 2004 May 15; 14(5):575-85. PubMed ID: 15054073
    [Abstract] [Full Text] [Related]

  • 13. Dissociating the neural mechanisms of visual attention in change detection using functional MRI.
    Huettel SA, Güzeldere G, McCarthy G.
    J Cogn Neurosci; 2001 Oct 01; 13(7):1006-18. PubMed ID: 11595102
    [Abstract] [Full Text] [Related]

  • 14. Developmental neural networks in children performing a Categorical N-Back Task.
    Ciesielski KT, Lesnik PG, Savoy RL, Grant EP, Ahlfors SP.
    Neuroimage; 2006 Nov 15; 33(3):980-90. PubMed ID: 16997580
    [Abstract] [Full Text] [Related]

  • 15. The interrelations between verbal working memory and visual selection of emotional faces.
    Grecucci A, Soto D, Rumiati RI, Humphreys GW, Rotshtein P.
    J Cogn Neurosci; 2010 Jun 15; 22(6):1189-200. PubMed ID: 19445604
    [Abstract] [Full Text] [Related]

  • 16. Impact of brain networks involved in vigilance on processing irrelevant visual motion.
    Breckel TP, Giessing C, Thiel CM.
    Neuroimage; 2011 Apr 15; 55(4):1754-62. PubMed ID: 21255659
    [Abstract] [Full Text] [Related]

  • 17. Functional magnetic resonance imaging of working memory among multiple sclerosis patients.
    Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA.
    J Neuroimaging; 2004 Apr 15; 14(2):150-7. PubMed ID: 15095561
    [Abstract] [Full Text] [Related]

  • 18. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D, Coe B, Munoz DP, Theeuwes J.
    J Cogn Neurosci; 2010 Apr 15; 22(4):761-74. PubMed ID: 19309291
    [Abstract] [Full Text] [Related]

  • 19. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD, Woldorff MG, Mangun GR.
    Neuroimage; 2005 Apr 15; 25(3):668-83. PubMed ID: 15808968
    [Abstract] [Full Text] [Related]

  • 20. An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task.
    Habeck C, Rakitin BC, Moeller J, Scarmeas N, Zarahn E, Brown T, Stern Y.
    Brain Res Cogn Brain Res; 2005 May 15; 23(2-3):207-20. PubMed ID: 15820629
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.