These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


264 related items for PubMed ID: 1505519

  • 1. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo.
    Mann RK, Grunstein M.
    EMBO J; 1992 Sep; 11(9):3297-306. PubMed ID: 1505519
    [Abstract] [Full Text] [Related]

  • 2. Yeast histone H4 and H3 N-termini have different effects on the chromatin structure of the GAL1 promoter.
    Fisher-Adams G, Grunstein M.
    EMBO J; 1995 Apr 03; 14(7):1468-77. PubMed ID: 7729422
    [Abstract] [Full Text] [Related]

  • 3. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo.
    Durrin LK, Mann RK, Kayne PS, Grunstein M.
    Cell; 1991 Jun 14; 65(6):1023-31. PubMed ID: 2044150
    [Abstract] [Full Text] [Related]

  • 4. Yeast histone H3 and H4 N termini function through different GAL1 regulatory elements to repress and activate transcription.
    Wan JS, Mann RK, Grunstein M.
    Proc Natl Acad Sci U S A; 1995 Jun 06; 92(12):5664-8. PubMed ID: 7777566
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation.
    Ling X, Harkness TA, Schultz MC, Fisher-Adams G, Grunstein M.
    Genes Dev; 1996 Mar 15; 10(6):686-99. PubMed ID: 8598296
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue.
    Chen TA, Smith MM, Le SY, Sternglanz R, Allfrey VG.
    J Biol Chem; 1991 Apr 05; 266(10):6489-98. PubMed ID: 2007598
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern.
    Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR.
    Mol Cell Biol; 1996 Aug 05; 16(8):4349-56. PubMed ID: 8754835
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.
    Johnston M, Flick JS, Pexton T.
    Mol Cell Biol; 1994 Jun 05; 14(6):3834-41. PubMed ID: 8196626
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.