These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


337 related items for PubMed ID: 15060150

  • 1. Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism.
    Naiki T, Wakayama T, Nakada D, Matsumoto K, Sugimoto K.
    Mol Cell Biol; 2004 Apr; 24(8):3277-85. PubMed ID: 15060150
    [Abstract] [Full Text] [Related]

  • 2. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response.
    Najor NA, Weatherford L, Brush GS.
    G3 (Bethesda); 2016 Dec 07; 6(12):3869-3881. PubMed ID: 27678521
    [Abstract] [Full Text] [Related]

  • 3. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.
    Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF.
    Mol Cell; 2002 May 07; 9(5):1055-65. PubMed ID: 12049741
    [Abstract] [Full Text] [Related]

  • 4. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.
    Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP.
    Mol Cell Biol; 2004 Dec 07; 24(23):10126-44. PubMed ID: 15542824
    [Abstract] [Full Text] [Related]

  • 5. Mec1/ATR regulates the generation of single-stranded DNA that attenuates Tel1/ATM signaling at DNA ends.
    Clerici M, Trovesi C, Galbiati A, Lucchini G, Longhese MP.
    EMBO J; 2014 Feb 03; 33(3):198-216. PubMed ID: 24357557
    [Abstract] [Full Text] [Related]

  • 6. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.
    Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D.
    Curr Biol; 2005 Aug 09; 15(15):1364-75. PubMed ID: 16085488
    [Abstract] [Full Text] [Related]

  • 7. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling.
    Javaheri A, Wysocki R, Jobin-Robitaille O, Altaf M, Côté J, Kron SJ.
    Proc Natl Acad Sci U S A; 2006 Sep 12; 103(37):13771-6. PubMed ID: 16940359
    [Abstract] [Full Text] [Related]

  • 8. Sae2 Function at DNA Double-Strand Breaks Is Bypassed by Dampening Tel1 or Rad53 Activity.
    Gobbini E, Villa M, Gnugnoli M, Menin L, Clerici M, Longhese MP.
    PLoS Genet; 2015 Nov 12; 11(11):e1005685. PubMed ID: 26584331
    [Abstract] [Full Text] [Related]

  • 9. Role of the Saccharomyces cerevisiae Rad53 checkpoint kinase in signaling double-strand breaks during the meiotic cell cycle.
    Cartagena-Lirola H, Guerini I, Manfrini N, Lucchini G, Longhese MP.
    Mol Cell Biol; 2008 Jul 12; 28(14):4480-93. PubMed ID: 18505828
    [Abstract] [Full Text] [Related]

  • 10. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE, Gilbert CS, Green CM, Lowndes NF.
    EMBO J; 1998 Oct 01; 17(19):5679-88. PubMed ID: 9755168
    [Abstract] [Full Text] [Related]

  • 11. Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts.
    Biswas H, Goto G, Wang W, Sung P, Sugimoto K.
    PLoS Genet; 2019 Aug 01; 15(8):e1008294. PubMed ID: 31369547
    [Abstract] [Full Text] [Related]

  • 12. Uncoupling Sae2 Functions in Downregulation of Tel1 and Rad53 Signaling Activities.
    Colombo CV, Menin L, Ranieri R, Bonetti D, Clerici M, Longhese MP.
    Genetics; 2019 Feb 01; 211(2):515-530. PubMed ID: 30538107
    [Abstract] [Full Text] [Related]

  • 13. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
    Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD.
    Mol Cell Proteomics; 2014 Feb 01; 13(2):551-65. PubMed ID: 24302356
    [Abstract] [Full Text] [Related]

  • 14. Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast.
    Ferrari M, Nachimuthu BT, Donnianni RA, Klein H, Pellicioli A.
    DNA Repair (Amst); 2013 May 01; 12(5):347-55. PubMed ID: 23473644
    [Abstract] [Full Text] [Related]

  • 15. Activation of the budding yeast securin Pds1 but not Rad53 correlates with double-strand break-associated G2/M cell cycle arrest in a mec1 hypomorphic mutant.
    Sun M, Fasullo M.
    Cell Cycle; 2007 Aug 01; 6(15):1896-902. PubMed ID: 17671432
    [Abstract] [Full Text] [Related]

  • 16. The Saccharomyces cerevisiae checkpoint genes RAD9, CHK1 and PDS1 are required for elevated homologous recombination in a mec1 (ATR) hypomorphic mutant.
    Fasullo M, Sun M.
    Cell Cycle; 2008 Aug 01; 7(15):2418-26. PubMed ID: 18677117
    [Abstract] [Full Text] [Related]

  • 17. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection.
    Yu TY, Kimble MT, Symington LS.
    Proc Natl Acad Sci U S A; 2018 Dec 18; 115(51):E11961-E11969. PubMed ID: 30510002
    [Abstract] [Full Text] [Related]

  • 18. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae.
    Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J.
    Mol Cell Biol; 2004 Apr 18; 24(7):2779-88. PubMed ID: 15024067
    [Abstract] [Full Text] [Related]

  • 19. Mec1ATR Autophosphorylation and Ddc2ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling.
    Memisoglu G, Lanz MC, Eapen VV, Jordan JM, Lee K, Smolka MB, Haber JE.
    Cell Rep; 2019 Jul 23; 28(4):1090-1102.e3. PubMed ID: 31340146
    [Abstract] [Full Text] [Related]

  • 20. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.
    Jia X, Weinert T, Lydall D.
    Genetics; 2004 Feb 23; 166(2):753-64. PubMed ID: 15020465
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.