These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 15063616
1. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. de Alteriis E, Silvestro G, Poletto M, Romano V, Capitanio D, Compagno C, Parascandola P. J Biotechnol; 2004 Apr 08; 109(1-2):83-92. PubMed ID: 15063616 [Abstract] [Full Text] [Related]
2. Glucoamylase by recombinant Kluyveromyces lactis cells: production and modelling of a fed batch bioreactor. Paciello L, Romano F, de Alteriis E, Parascandola P, Romano V. Bioprocess Biosyst Eng; 2010 May 08; 33(4):525-32. PubMed ID: 19727836 [Abstract] [Full Text] [Related]
3. How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. Merico A, Capitanio D, Vigentini I, Ranzi BM, Compagno C. J Biotechnol; 2004 Apr 08; 109(1-2):139-46. PubMed ID: 15063622 [Abstract] [Full Text] [Related]
4. Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Kumar P, Satyanarayana T. Lett Appl Microbiol; 2007 Oct 08; 45(4):392-7. PubMed ID: 17897381 [Abstract] [Full Text] [Related]
5. Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Kumar P, Satyanarayana T. Bioresour Technol; 2007 Apr 08; 98(6):1252-9. PubMed ID: 16806908 [Abstract] [Full Text] [Related]
6. Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Fouad Sarrouh B, Tresinari Dos Santos D, Silvério da Silva S. Biotechnol J; 2007 Jun 08; 2(6):759-63. PubMed ID: 17427994 [Abstract] [Full Text] [Related]
7. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Kilonzo P, Margaritis A, Bergougnou M. J Biotechnol; 2009 Aug 10; 143(1):60-8. PubMed ID: 19539672 [Abstract] [Full Text] [Related]
8. KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. Uccelletti D, Farina F, Mancini P, Palleschi C. J Biotechnol; 2004 Apr 08; 109(1-2):93-101. PubMed ID: 15063617 [Abstract] [Full Text] [Related]
9. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Garbayo I, Vílchez C, Vega JM, Nava-Saucedo JE, Barbotin JN. Biotechnol Lett; 2004 Dec 08; 26(23):1825-7. PubMed ID: 15672222 [Abstract] [Full Text] [Related]
10. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Salani F, Bianchi MM. Appl Microbiol Biotechnol; 2006 Jan 08; 69(5):564-72. PubMed ID: 16175368 [Abstract] [Full Text] [Related]
11. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Carvalho W, Canilha L, Silva SS. Bioprocess Biosyst Eng; 2008 Aug 08; 31(5):493-8. PubMed ID: 18175152 [Abstract] [Full Text] [Related]
12. Optimization of process parameters for the continuous ethanol production by Kluyveromyces lactis immobilized cells in hydrogel copolymer carrier. Deriase SF, Farahat LM, El-Batal AI. Acta Microbiol Pol; 2001 Aug 08; 50(1):45-51. PubMed ID: 11518393 [Abstract] [Full Text] [Related]
13. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects. Konti A, Mamma D, Hatzinikolaou DG, Kekos D. Bioprocess Biosyst Eng; 2016 Oct 08; 39(10):1597-609. PubMed ID: 27262716 [Abstract] [Full Text] [Related]
14. Ethanol production by Kluyveromyces lactis immobilized cells in copolymer carriers produced by radiation polymerization. El-Batal AI, Farahat LM, El-Rehim HA. Acta Microbiol Pol; 2000 Oct 08; 49(2):157-66. PubMed ID: 11093678 [Abstract] [Full Text] [Related]
15. Modified alginate and chitosan for lactic acid bacteria immobilization. Le-Tien C, Millette M, Mateescu MA, Lacroix M. Biotechnol Appl Biochem; 2004 Jun 08; 39(Pt 3):347-54. PubMed ID: 15154848 [Abstract] [Full Text] [Related]
16. Immobilization of Escherichia coli novablue gamma-glutamyltranspeptidase in Ca-alginate-kappa-carrageenan beads. Hung CP, Lo HF, Hsu WH, Chen SC, Lin LL. Appl Biochem Biotechnol; 2008 Aug 08; 150(2):157-70. PubMed ID: 18483700 [Abstract] [Full Text] [Related]
17. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Ha J, Engler CR, Wild JR. Bioresour Technol; 2009 Feb 08; 100(3):1138-42. PubMed ID: 18845433 [Abstract] [Full Text] [Related]
18. Unexpected distribution of immobilized microorganisms within alginate beads. Zohar-Perez C, Chet I, Nussinovitch A. Biotechnol Bioeng; 2004 Dec 05; 88(5):671-4. PubMed ID: 15472925 [Abstract] [Full Text] [Related]
19. Immobilization of Bacillus amyloliquefaciens MBL27 cells for enhanced antimicrobial protein production using calcium alginate beads. Kumaravel V, Gopal SR. Biotechnol Appl Biochem; 2010 Dec 05; 57(3):97-103. PubMed ID: 21044046 [Abstract] [Full Text] [Related]
20. Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized-bed reactor. Federici F, Petruccioli M, Miller MW. Appl Microbiol Biotechnol; 1990 Jul 05; 33(4):407-9. PubMed ID: 1366744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]