These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 15065130
1. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences. Willott JF, Bross L. J Comp Neurol; 2004 May 03; 472(3):358-70. PubMed ID: 15065130 [Abstract] [Full Text] [Related]
2. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus. Willott JF, Bosch JV, Shimizu T, Ding DL. Hear Res; 2006 May 03; 216-217():138-45. PubMed ID: 16497456 [Abstract] [Full Text] [Related]
3. Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. Willott JF, Jackson LM, Hunter KP. J Comp Neurol; 1987 Jun 15; 260(3):472-80. PubMed ID: 3597843 [Abstract] [Full Text] [Related]
4. Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones. Willott JF, VandenBosche J, Shimizu T, Ding DL, Salvi R. Hear Res; 2008 Jan 15; 235(1-2):60-71. PubMed ID: 18077117 [Abstract] [Full Text] [Related]
5. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice. Willott JF. Hear Res; 2009 Jun 15; 252(1-2):89-99. PubMed ID: 19114100 [Abstract] [Full Text] [Related]
6. Cellular correlates of progressive hearing loss in 129S6/SvEv mice. Ohlemiller KK, Gagnon PM. J Comp Neurol; 2004 Feb 09; 469(3):377-90. PubMed ID: 14730589 [Abstract] [Full Text] [Related]
7. The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Willott JF, Turner JG, Carlson S, Ding D, Seegers Bross L, Falls WA. Hear Res; 1998 Jan 09; 115(1-2):162-74. PubMed ID: 9472745 [Abstract] [Full Text] [Related]
8. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus. Willott JF, Bross LS, McFadden S. J Assoc Res Otolaryngol; 2005 Sep 09; 6(3):234-43. PubMed ID: 15983726 [Abstract] [Full Text] [Related]
9. Ameliorative effects of an augmented acoustic environment on age-related hearing loss in middle-aged Fischer 344/NHsd rats. Tanaka C, Bielefeld EC, Chen GD, Li M, Henderson D. Laryngoscope; 2009 Jul 09; 119(7):1374-9. PubMed ID: 19418535 [Abstract] [Full Text] [Related]
10. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. Zhu X, Vasilyeva ON, Kim S, Jacobson M, Romney J, Waterman MS, Tuttle D, Frisina RD. J Comp Neurol; 2007 Aug 10; 503(5):593-604. PubMed ID: 17559088 [Abstract] [Full Text] [Related]
11. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Harding GW, Bohne BA, Vos JD. Hear Res; 2005 Jun 10; 204(1-2):90-100. PubMed ID: 15925194 [Abstract] [Full Text] [Related]
12. Apical-to-basal gradients in age-related cochlear degeneration and their relationship to "primary" loss of cochlear neurons. Ohlemiller KK, Gagnon PM. J Comp Neurol; 2004 Nov 01; 479(1):103-16. PubMed ID: 15389608 [Abstract] [Full Text] [Related]
13. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells. Tanaka C, Chen GD, Hu BH, Chi LH, Li M, Zheng G, Bielefeld EC, Jamesdaniel S, Coling D, Henderson D. Hear Res; 2009 Apr 01; 250(1-2):10-8. PubMed ID: 19450428 [Abstract] [Full Text] [Related]
14. Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms. Willott JF, VandenBosche J, Shimizu T, Ding DL, Salvi R. Hear Res; 2006 Nov 01; 221(1-2):73-81. PubMed ID: 16973316 [Abstract] [Full Text] [Related]
15. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease. Masuda M, Tanaka KF, Kanzaki S, Wakabayashi K, Oishi N, Suzuki T, Ikenaka K, Ogawa K. Neurosci Res; 2008 Sep 01; 62(1):15-24. PubMed ID: 18602179 [Abstract] [Full Text] [Related]
16. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice. Turner JG, Willott JF. Hear Res; 1998 Apr 01; 118(1-2):101-13. PubMed ID: 9606065 [Abstract] [Full Text] [Related]
17. Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Ouagazzal AM, Reiss D, Romand R. Behav Brain Res; 2006 Sep 25; 172(2):307-15. PubMed ID: 16814879 [Abstract] [Full Text] [Related]
18. Morphology of the dorsal cochlear nucleus in C57BL/6J and CBA/J mice across the life span. Willott JF, Bross LS, McFadden SL. J Comp Neurol; 1992 Jul 22; 321(4):666-78. PubMed ID: 1506486 [Abstract] [Full Text] [Related]
19. Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. Willott JF, Aitkin LM, McFadden SL. J Comp Neurol; 1993 Mar 15; 329(3):402-11. PubMed ID: 8459051 [Abstract] [Full Text] [Related]
20. Age-related increase in PKC gamma expression in the cochlear nucleus of hearing impaired C57BL/6J and BALB/c mice. Kou ZZ, Zhang Y, Zhang T, Li H, Li YQ. J Chem Neuroanat; 2011 Jan 15; 41(1):20-4. PubMed ID: 21056652 [Abstract] [Full Text] [Related] Page: [Next] [New Search]