These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 15066042

  • 1. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development.
    Moorthy S, Watnick PI.
    Mol Microbiol; 2004 Apr; 52(2):573-87. PubMed ID: 15066042
    [Abstract] [Full Text] [Related]

  • 2. Steps in the development of a Vibrio cholerae El Tor biofilm.
    Watnick PI, Kolter R.
    Mol Microbiol; 1999 Nov; 34(3):586-95. PubMed ID: 10564499
    [Abstract] [Full Text] [Related]

  • 3. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development.
    Moorthy S, Watnick PI.
    Mol Microbiol; 2005 Sep; 57(6):1623-35. PubMed ID: 16135229
    [Abstract] [Full Text] [Related]

  • 4. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for DeltaPsi in the transition to permanent attachment.
    Van Dellen KL, Houot L, Watnick PI.
    J Bacteriol; 2008 Dec; 190(24):8185-96. PubMed ID: 18849423
    [Abstract] [Full Text] [Related]

  • 5. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine.
    Karatan E, Duncan TR, Watnick PI.
    J Bacteriol; 2005 Nov; 187(21):7434-43. PubMed ID: 16237027
    [Abstract] [Full Text] [Related]

  • 6. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor.
    Watnick PI, Fullner KJ, Kolter R.
    J Bacteriol; 1999 Jun; 181(11):3606-9. PubMed ID: 10348878
    [Abstract] [Full Text] [Related]

  • 7. Two regulatory factors of Vibrio cholerae activating the mannose-sensitive haemagglutinin pilus expression is important for biofilm formation and colonization in mice.
    Shi M, Zheng Y, Wang X, Wang Z, Yang M.
    Microbiology (Reading); 2021 Oct; 167(10):. PubMed ID: 34665117
    [Abstract] [Full Text] [Related]

  • 8. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture.
    Bomchil N, Watnick P, Kolter R.
    J Bacteriol; 2003 Feb; 185(4):1384-90. PubMed ID: 12562809
    [Abstract] [Full Text] [Related]

  • 9. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.
    Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T.
    FEMS Microbiol Lett; 2006 Nov; 264(1):89-97. PubMed ID: 17020553
    [Abstract] [Full Text] [Related]

  • 10. vpsA- and luxO-independent biofilms of Vibrio cholerae.
    Müller J, Miller MC, Nielsen AT, Schoolnik GK, Spormann AM.
    FEMS Microbiol Lett; 2007 Oct; 275(2):199-206. PubMed ID: 17697110
    [Abstract] [Full Text] [Related]

  • 11. Nitric oxide stimulates type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA.
    Hughes HQ, Floyd KA, Hossain S, Anantharaman S, Kysela DT, Zöldi M, Barna L, Yu Y, Kappler MP, Dalia TN, Podicheti RC, Rusch DB, Zhuang M, Fraser CL, Brun YV, Jacobson SC, McKinlay JB, Yildiz FH, Boon EM, Dalia AB.
    Proc Natl Acad Sci U S A; 2022 Feb 15; 119(7):. PubMed ID: 35135874
    [Abstract] [Full Text] [Related]

  • 12. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water.
    Kierek K, Watnick PI.
    Proc Natl Acad Sci U S A; 2003 Nov 25; 100(24):14357-62. PubMed ID: 14614140
    [Abstract] [Full Text] [Related]

  • 13. Quorum sensing regulates transcription of the pilin gene mshA1 of MSHA pilus in Vibrio parahaemolyticus.
    Sun J, Li X, Qiu Y, Xue X, Zhang M, Yang W, Zhou D, Hu L, Lu R, Zhang Y.
    Gene; 2022 Jan 10; 807():145961. PubMed ID: 34530088
    [Abstract] [Full Text] [Related]

  • 14. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P, Spormann AM.
    J Bacteriol; 2004 Dec 10; 186(24):8254-66. PubMed ID: 15576774
    [Abstract] [Full Text] [Related]

  • 15. Post-transcriptional cross-talk between pro- and anti-colonization pili biosynthesis systems in Vibrio cholerae.
    Hsiao A, Toscano K, Zhu J.
    Mol Microbiol; 2008 Feb 10; 67(4):849-60. PubMed ID: 18179420
    [Abstract] [Full Text] [Related]

  • 16. Direct regulation by the Vibrio cholerae regulator ToxT to modulate colonization and anticolonization pilus expression.
    Hsiao A, Xu X, Kan B, Kulkarni RV, Zhu J.
    Infect Immun; 2009 Apr 10; 77(4):1383-8. PubMed ID: 19168737
    [Abstract] [Full Text] [Related]

  • 17. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae.
    Lauriano CM, Ghosh C, Correa NE, Klose KE.
    J Bacteriol; 2004 Aug 10; 186(15):4864-74. PubMed ID: 15262923
    [Abstract] [Full Text] [Related]

  • 18. Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus.
    Marsh JW, Taylor RK.
    J Bacteriol; 1999 Feb 10; 181(4):1110-7. PubMed ID: 9973335
    [Abstract] [Full Text] [Related]

  • 19. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae.
    Fong JC, Karplus K, Schoolnik GK, Yildiz FH.
    J Bacteriol; 2006 Feb 10; 188(3):1049-59. PubMed ID: 16428409
    [Abstract] [Full Text] [Related]

  • 20. Minor pilin subunits are conserved in Vibrio cholerae type IV pili.
    Toma C, Kuroki H, Nakasone N, Ehara M, Iwanaga M.
    FEMS Immunol Med Microbiol; 2002 Mar 25; 33(1):35-40. PubMed ID: 11985966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.