These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


497 related items for PubMed ID: 15070244

  • 21. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.
    Jeraj R, Keall PJ, Ostwald PM.
    Phys Med Biol; 1999 Mar; 44(3):705-17. PubMed ID: 10211804
    [Abstract] [Full Text] [Related]

  • 22. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit.
    Incerti S, Gault N, Habchi C, Lefaix JL, Moretto P, Poncy JL, Pouthier T, Seznec H.
    Radiat Prot Dosimetry; 2006 Mar; 122(1-4):327-9. PubMed ID: 17132663
    [Abstract] [Full Text] [Related]

  • 23. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy.
    Slimani FAA, Hamdi M, Bentourkia M.
    Comput Med Imaging Graph; 2018 Jul; 67():30-39. PubMed ID: 29738914
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.
    Enger SA, Munck af Rosenschöld P, Rezaei A, Lundqvist H.
    Med Phys; 2006 Feb; 33(2):337-41. PubMed ID: 16532938
    [Abstract] [Full Text] [Related]

  • 26. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H, Moralles M, Siqueira Pde T, Guimarães Cda C, Cintra FB, dos Santos A.
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [Abstract] [Full Text] [Related]

  • 27. Comparison of GEANT4 very low energy cross section models with experimental data in water.
    Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z, Villagrasa C, Baldacchin G, Guèye P, Capra R, Nieminen P, Zacharatou C.
    Med Phys; 2010 Sep; 37(9):4692-708. PubMed ID: 20964188
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam.
    Ding GX.
    Med Phys; 2002 Nov; 29(11):2459-63. PubMed ID: 12462709
    [Abstract] [Full Text] [Related]

  • 31. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.
    Rodrigues A, Sawkey D, Yin FF, Wu Q.
    Med Phys; 2015 May; 42(5):2389-403. PubMed ID: 25979034
    [Abstract] [Full Text] [Related]

  • 32. Monte Carlo simulation of large electron fields.
    Faddegon B, Schreiber E, Ding X.
    Phys Med Biol; 2005 Mar 07; 50(5):741-53. PubMed ID: 15798251
    [Abstract] [Full Text] [Related]

  • 33. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y, Auzel L, Monini C, Kriachok K, Létang JM, Testa E, Maigne L, Beuve M.
    Med Phys; 2022 May 07; 49(5):3457-3469. PubMed ID: 35318686
    [Abstract] [Full Text] [Related]

  • 34. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC, Grigorov GN.
    Phys Med Biol; 2007 Jul 07; 52(13):3965-77. PubMed ID: 17664588
    [Abstract] [Full Text] [Related]

  • 35. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB, Sarfehnia A, Paudel MR, Kim A, Hissoiny S, Sahgal A, Keller B.
    Med Phys; 2016 Feb 07; 43(2):894-907. PubMed ID: 26843250
    [Abstract] [Full Text] [Related]

  • 36. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D, Kyriakou I, Okada S, Tran HN, Lampe N, Guatelli S, Bordage MC, Ivanchenko V, Murakami K, Sasaki T, Emfietzoglou D, Incerti S.
    Med Phys; 2018 May 07; 45(5):2230-2242. PubMed ID: 29480947
    [Abstract] [Full Text] [Related]

  • 37. Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources.
    Chiavassa S, Lemosquet A, Aubineau-Lanièce I, de Carlan L, Clairand I, Ferrer L, Bardiès M, Franck D, Zankl M.
    Radiat Prot Dosimetry; 2005 May 07; 116(1-4 Pt 2):631-5. PubMed ID: 16604715
    [Abstract] [Full Text] [Related]

  • 38. Monte carlo study of MOSFET packaging, optimised for improved energy response: single MOSFET filtration.
    Othman MA, Cutajar DL, Hardcastle N, Guatelli S, Rosenfeld AB.
    Radiat Prot Dosimetry; 2010 Sep 07; 141(1):10-7. PubMed ID: 20460400
    [Abstract] [Full Text] [Related]

  • 39. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
    Vilches M, García-Pareja S, Guerrero R, Anguiano M, Lallena AM.
    Radiother Oncol; 2008 Jan 07; 86(1):104-8. PubMed ID: 18086502
    [Abstract] [Full Text] [Related]

  • 40. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ, Siebers JV, Libby B, Mohan R.
    Med Phys; 2003 Apr 07; 30(4):574-82. PubMed ID: 12722809
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.