These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
304 related items for PubMed ID: 15073019
1. Probabilistic representation of gene regulatory networks. Mao L, Resat H. Bioinformatics; 2004 Sep 22; 20(14):2258-69. PubMed ID: 15073019 [Abstract] [Full Text] [Related]
2. Advances to Bayesian network inference for generating causal networks from observational biological data. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Bioinformatics; 2004 Dec 12; 20(18):3594-603. PubMed ID: 15284094 [Abstract] [Full Text] [Related]
3. A method for estimating stochastic noise in large genetic regulatory networks. Orrell D, Ramsey S, de Atauri P, Bolouri H. Bioinformatics; 2005 Jan 15; 21(2):208-17. PubMed ID: 15319259 [Abstract] [Full Text] [Related]
4. Using a state-space model with hidden variables to infer transcription factor activities. Li Z, Shaw SM, Yedwabnick MJ, Chan C. Bioinformatics; 2006 Mar 15; 22(6):747-54. PubMed ID: 16403793 [Abstract] [Full Text] [Related]
5. On the attenuation and amplification of molecular noise in genetic regulatory networks. Chen BS, Wang YC. BMC Bioinformatics; 2006 Feb 02; 7():52. PubMed ID: 16457708 [Abstract] [Full Text] [Related]
6. Superiority of network motifs over optimal networks and an application to the revelation of gene network evolution. Ott S, Hansen A, Kim SY, Miyano S. Bioinformatics; 2005 Jan 15; 21(2):227-38. PubMed ID: 15377501 [Abstract] [Full Text] [Related]
7. Inferring gene regulatory networks from multiple microarray datasets. Wang Y, Joshi T, Zhang XS, Xu D, Chen L. Bioinformatics; 2006 Oct 01; 22(19):2413-20. PubMed ID: 16864593 [Abstract] [Full Text] [Related]
8. Inferring gene regulatory networks from time series data using the minimum description length principle. Zhao W, Serpedin E, Dougherty ER. Bioinformatics; 2006 Sep 01; 22(17):2129-35. PubMed ID: 16845143 [Abstract] [Full Text] [Related]
9. Learning regulatory programs that accurately predict differential expression with MEDUSA. Kundaje A, Lianoglou S, Li X, Quigley D, Arias M, Wiggins CH, Zhang L, Leslie C. Ann N Y Acad Sci; 2007 Dec 01; 1115():178-202. PubMed ID: 17934055 [Abstract] [Full Text] [Related]
10. Ensemble learning of genetic networks from time-series expression data. Nam D, Yoon SH, Kim JF. Bioinformatics; 2007 Dec 01; 23(23):3225-31. PubMed ID: 17977884 [Abstract] [Full Text] [Related]
11. Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment. Missal K, Cross MA, Drasdo D. Bioinformatics; 2006 Mar 15; 22(6):731-8. PubMed ID: 16332705 [Abstract] [Full Text] [Related]
12. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Werhli AV, Grzegorczyk M, Husmeier D. Bioinformatics; 2006 Oct 15; 22(20):2523-31. PubMed ID: 16844710 [Abstract] [Full Text] [Related]
13. Predicting genetic regulatory response using classification. Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C. Bioinformatics; 2004 Aug 04; 20 Suppl 1():i232-40. PubMed ID: 15262804 [Abstract] [Full Text] [Related]
14. Bayesian sparse hidden components analysis for transcription regulation networks. Sabatti C, James GM. Bioinformatics; 2006 Mar 15; 22(6):739-46. PubMed ID: 16368767 [Abstract] [Full Text] [Related]
15. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones DS, Print C, Miyano S. Bioinformatics; 2008 Apr 01; 24(7):932-42. PubMed ID: 18292116 [Abstract] [Full Text] [Related]
16. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL. Bioinformatics; 2005 Feb 01; 21(3):349-56. PubMed ID: 15353451 [Abstract] [Full Text] [Related]
17. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE. Bioinformatics; 2007 Jul 01; 23(13):1623-30. PubMed ID: 17463021 [Abstract] [Full Text] [Related]