These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


293 related items for PubMed ID: 15075329

  • 1. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N, Sane DC, Hutson SM, Wallin R.
    J Biol Chem; 2004 Jun 11; 279(24):25276-83. PubMed ID: 15075329
    [Abstract] [Full Text] [Related]

  • 2. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R, Sane DC, Hutson SM.
    Thromb Res; 2002 Nov 25; 108(4):221-6. PubMed ID: 12617985
    [Abstract] [Full Text] [Related]

  • 3. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N, Sane DC, Hutson SM, Wallin R.
    J Biol Chem; 2005 Mar 18; 280(11):10540-7. PubMed ID: 15640149
    [Abstract] [Full Text] [Related]

  • 4. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D, Hutson SM, Wallin R.
    J Biol Chem; 1997 Nov 14; 272(46):29068-75. PubMed ID: 9360981
    [Abstract] [Full Text] [Related]

  • 5. A molecular mechanism for genetic warfarin resistance in the rat.
    Wallin R, Hutson SM, Cain D, Sweatt A, Sane DC.
    FASEB J; 2001 Nov 14; 15(13):2542-4. PubMed ID: 11641264
    [Abstract] [Full Text] [Related]

  • 6. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N, Hutson SM, Wallin R.
    J Biol Chem; 2007 Jan 26; 282(4):2626-35. PubMed ID: 17124179
    [Abstract] [Full Text] [Related]

  • 7. Structure and function of vitamin K epoxide reductase.
    Tie JK, Stafford DW.
    Vitam Horm; 2008 Jan 26; 78():103-30. PubMed ID: 18374192
    [Abstract] [Full Text] [Related]

  • 8. The vitamin K cycle.
    Stafford DW.
    J Thromb Haemost; 2005 Aug 26; 3(8):1873-8. PubMed ID: 16102054
    [Abstract] [Full Text] [Related]

  • 9. Warfarin and the vitamin K-dependent gamma-carboxylation system.
    Wallin R, Hutson SM.
    Trends Mol Med; 2004 Jul 26; 10(7):299-302. PubMed ID: 15242675
    [Abstract] [Full Text] [Related]

  • 10. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors.
    Wallin R, Wajih N, Hutson SM.
    Vitam Horm; 2008 Jul 26; 78():227-46. PubMed ID: 18374197
    [Abstract] [Full Text] [Related]

  • 11. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification.
    Bandyopadhyay PK.
    Vitam Horm; 2008 Jul 26; 78():157-84. PubMed ID: 18374194
    [Abstract] [Full Text] [Related]

  • 12. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Müller CR, Strom TM, Oldenburg J.
    Nature; 2004 Feb 05; 427(6974):537-41. PubMed ID: 14765194
    [Abstract] [Full Text] [Related]

  • 13. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver.
    Cain D, Hutson SM, Wallin R.
    Thromb Haemost; 1998 Jul 05; 80(1):128-33. PubMed ID: 9684798
    [Abstract] [Full Text] [Related]

  • 14. Developmental expression of vitamin K-dependent gamma-carboxylase activity in zebrafish embryos: effect of warfarin.
    Hanumanthaiah R, Thankavel B, Day K, Gregory M, Jagadeeswaran P.
    Blood Cells Mol Dis; 2001 Jul 05; 27(6):992-9. PubMed ID: 11831865
    [Abstract] [Full Text] [Related]

  • 15. Vitamin K-dependent carboxylation.
    Berkner KL.
    Vitam Horm; 2008 Jul 05; 78():131-56. PubMed ID: 18374193
    [Abstract] [Full Text] [Related]

  • 16. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R, Martin LF.
    J Clin Invest; 1985 Nov 05; 76(5):1879-84. PubMed ID: 3932474
    [Abstract] [Full Text] [Related]

  • 17. In vitro inhibition of vitamin K dependent carboxylation by tetrachloropyridinol and the imidazopyridines.
    Friedman PA, Griep AE.
    Biochemistry; 1980 Jul 08; 19(14):3381-6. PubMed ID: 6773541
    [Abstract] [Full Text] [Related]

  • 18. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA, Usubalieva A, Hallgren KW, Berkner KL.
    J Biol Chem; 2011 Mar 04; 286(9):7267-78. PubMed ID: 20978134
    [Abstract] [Full Text] [Related]

  • 19. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats.
    Tanaka KD, Kawai YK, Ikenaka Y, Harunari T, Tanikawa T, Fujita S, Ishizuka M.
    J Vet Med Sci; 2013 Feb 04; 75(2):135-9. PubMed ID: 23018795
    [Abstract] [Full Text] [Related]

  • 20. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A, Matagrin B, Spohn G, Prouillac C, Benoit E, Lattard V.
    J Biol Chem; 2013 Oct 04; 288(40):28733-42. PubMed ID: 23928358
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.