These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 15080639
1. Formation of volatile compounds in model experiments with crude leek (Allium ampeloprasum Var. Lancelot) enzyme extract and linoleic acid or linolenic acid. Nielsen GS, Larsen LM, Poll L. J Agric Food Chem; 2004 Apr 21; 52(8):2315-21. PubMed ID: 15080639 [Abstract] [Full Text] [Related]
2. Formation of aroma compounds during long-term frozen storage of unblanched leek (Allium ampeloprasum Var. Bulga) as affected by packaging atmosphere and slice thickness. Nielsen GS, Larsen LM, Poll L. J Agric Food Chem; 2004 Mar 10; 52(5):1234-40. PubMed ID: 14995127 [Abstract] [Full Text] [Related]
3. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Tijet N, Schneider C, Muller BL, Brash AR. Arch Biochem Biophys; 2001 Feb 15; 386(2):281-9. PubMed ID: 11368353 [Abstract] [Full Text] [Related]
4. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Buchhaupt M, Guder JC, Etschmann MM, Schrader J. Appl Microbiol Biotechnol; 2012 Jan 15; 93(1):159-68. PubMed ID: 21789493 [Abstract] [Full Text] [Related]
5. Formation of aroma compounds and lipoxygenase (EC 1.13.11.12) activity in unblanched leek (Allium ampeloprasum Var. Bulga) slices during long-term frozen storage. Nielsen GS, Larsen LM, Poll L. J Agric Food Chem; 2003 Mar 26; 51(7):1970-6. PubMed ID: 12643660 [Abstract] [Full Text] [Related]
6. Impact of blanching and packaging atmosphere on the formation of aroma compounds during long-term frozen storage of leek (Allium ampeloprasum Var. Bulga) slices. Nielsen GS, Larsen LM, Poll L. J Agric Food Chem; 2004 Jul 28; 52(15):4844-52. PubMed ID: 15264924 [Abstract] [Full Text] [Related]
7. A simple and efficient system for green note compound biogenesis by use of certain lipoxygenase and hydroperoxide lyase sources. Fukushige H, Hildebrand DF. J Agric Food Chem; 2005 Aug 24; 53(17):6877-82. PubMed ID: 16104814 [Abstract] [Full Text] [Related]
8. Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. Salas JJ, Sánchez C, García-González DL, Aparicio R. J Agric Food Chem; 2005 Mar 09; 53(5):1648-55. PubMed ID: 15740054 [Abstract] [Full Text] [Related]
9. Anaerobic lipoxygenase activity from Chlorella pyrenoidosa. Nuñez A, Foglia TA, Piazza GJ. Biochem Soc Trans; 2000 Dec 09; 28(6):950-3. PubMed ID: 11171268 [Abstract] [Full Text] [Related]
10. Volatile compound biosynthesis by green leaves from an Arabidopsis thaliana hydroperoxide lyase knockout mutant. Salas JJ, García-Gonzalez DL, Aparicio R. J Agric Food Chem; 2006 Oct 18; 54(21):8199-205. PubMed ID: 17032029 [Abstract] [Full Text] [Related]
11. Cofactor recycling in a coupled enzyme oxidation-reduction reaction: conversion of omega-oxo-fatty acids into omega-hydroxy and dicarboxylic acids. Nuñez A, Foglia TA, Piazza GJ. Biotechnol Appl Biochem; 1999 Jun 18; 29(3):207-12. PubMed ID: 10334949 [Abstract] [Full Text] [Related]
12. Purification and partial characterization of lipoxygenase from desert truffle (Terfezia claveryi Chatin) ascocarps. Pérez-Gilabert M, Sánchez-Felipe I, García-Carmona F. J Agric Food Chem; 2005 May 04; 53(9):3666-71. PubMed ID: 15853417 [Abstract] [Full Text] [Related]
13. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. Chen S, Zhang R, Hao L, Chen W, Cheng S. PLoS One; 2015 May 04; 10(3):e0119444. PubMed ID: 25799542 [Abstract] [Full Text] [Related]
14. Method to produce 9(S)-hydroperoxides of linoleic and linolenic acids by maize lipoxygenase. Gardner HW, Grove MJ. Lipids; 2001 May 04; 36(5):529-33. PubMed ID: 11432467 [Abstract] [Full Text] [Related]
15. Lipoxygenase involvement in ripening strawberry. Leone A, Bleve-Zacheo T, Gerardi C, Melillo MT, Leo L, Zacheo G. J Agric Food Chem; 2006 Sep 06; 54(18):6835-44. PubMed ID: 16939347 [Abstract] [Full Text] [Related]
16. Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application. Huang FC, Schwab W. BMC Biotechnol; 2011 Mar 30; 11():30. PubMed ID: 21450085 [Abstract] [Full Text] [Related]
17. [So-called "green odor" as plant origin--chemistry and biochemistry]. Hatanaka A. Seikagaku; 2003 Nov 30; 75(11):1414-28. PubMed ID: 14699842 [No Abstract] [Full Text] [Related]
18. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. Zhang B, Shen JY, Wei WW, Xi WP, Xu CJ, Ferguson I, Chen K. J Agric Food Chem; 2010 May 26; 58(10):6157-65. PubMed ID: 20415420 [Abstract] [Full Text] [Related]
19. Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. Myung K, Hamilton-Kemp TR, Archbold DD. J Agric Food Chem; 2006 Feb 22; 54(4):1442-8. PubMed ID: 16478272 [Abstract] [Full Text] [Related]
20. Hydroperoxide-lyase activity in mint leaves. Volatile C6-aldehyde production from hydroperoxy-fatty acids. Gargouri M, Drouet P, Legoy MD. J Biotechnol; 2004 Jul 01; 111(1):59-65. PubMed ID: 15196770 [Abstract] [Full Text] [Related] Page: [Next] [New Search]