These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1294 related items for PubMed ID: 15094547

  • 21. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study.
    Techy F, Mageswaran P, Colbrunn RW, Bonner TF, McLain RF.
    Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926
    [Abstract] [Full Text] [Related]

  • 22. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
    Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA.
    Spine (Phila Pa 1976); 2006 Apr 01; 31(7):762-8. PubMed ID: 16582849
    [Abstract] [Full Text] [Related]

  • 23. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.
    Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ.
    Spine (Phila Pa 1976); 2012 Jan 15; 37(2):E79-85. PubMed ID: 21629171
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Biomechanical comparison of supplemental posterior fixations for two-level anterior lumbar interbody fusion.
    Wang M, Tang SJ, McGrady LM, Rao RD.
    Proc Inst Mech Eng H; 2013 Mar 15; 227(3):245-50. PubMed ID: 23662340
    [Abstract] [Full Text] [Related]

  • 26. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation.
    Reis MT, Reyes PM, Bse, Altun I, Newcomb AG, Singh V, Chang SW, Kelly BP, Crawford NR.
    J Neurosurg Spine; 2016 Dec 15; 25(6):720-726. PubMed ID: 27391398
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques.
    Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F.
    Spine (Phila Pa 1976); 2005 Dec 01; 30(23):2631-6. PubMed ID: 16319749
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.
    Tsantrizos A, Baramki HG, Zeidman S, Steffen T.
    Spine (Phila Pa 1976); 2000 Aug 01; 25(15):1899-907. PubMed ID: 10908932
    [Abstract] [Full Text] [Related]

  • 32. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain.
    Hlubek RJ, Godzik J, Newcomb AGUS, Lehrman JN, de Andrada B, Bohl MA, Farber SH, Kelly BP, Turner JD.
    Spine J; 2019 May 01; 19(5):942-950. PubMed ID: 30419290
    [Abstract] [Full Text] [Related]

  • 33. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion].
    Dong JW, Feng F, Zhao WD, Rong LM, Liu XM.
    Zhonghua Wai Ke Za Zhi; 2011 May 01; 49(5):436-9. PubMed ID: 21733402
    [Abstract] [Full Text] [Related]

  • 34. [Biomechanical evaluation of asymmetrical posterior internal fixation for transforaminal lumbar interbody fusion with transfacetopedicular screws].
    Ao J, Jin AM, Zhao WD, Zhang H, Min SX, Yu B, Chen WY.
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 May 01; 29(5):959-61, 965. PubMed ID: 19460720
    [Abstract] [Full Text] [Related]

  • 35. Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion.
    Schleicher P, Beth P, Ottenbacher A, Pflugmacher R, Scholz M, Schnake KJ, Haas NP, Kandziora F.
    J Neurosurg Spine; 2008 Oct 01; 9(4):363-71. PubMed ID: 18939923
    [Abstract] [Full Text] [Related]

  • 36. Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion.
    Li J, Shang J, Zhou Y, Li C, Liu H.
    PLoS One; 2015 Oct 01; 10(12):e0144637. PubMed ID: 26649749
    [Abstract] [Full Text] [Related]

  • 37. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
    Nayak AN, Gutierrez S, Billys JB, Santoni BG, Castellvi AE.
    Spine J; 2013 Oct 01; 13(10):1331-8. PubMed ID: 23685215
    [Abstract] [Full Text] [Related]

  • 38. Which posterior instrumentation is better for two-level anterior lumbar interbody fusion: translaminar facet screw or pedicle screw?
    Hou Y, Shen Y, Liu Z, Nie Z.
    Arch Orthop Trauma Surg; 2013 Jan 01; 133(1):37-42. PubMed ID: 23109094
    [Abstract] [Full Text] [Related]

  • 39. Biomechanical analysis of a newly developed shape memory alloy hook in a transforaminal lumbar interbody fusion (TLIF) in vitro model.
    Wang X, Xu J, Zhu Y, Li J, Zhou S, Tian S, Xiang Y, Liu X, Zheng Y, Pan T.
    PLoS One; 2014 Jan 01; 9(12):e114326. PubMed ID: 25474112
    [Abstract] [Full Text] [Related]

  • 40. The biomechanical effects of spondylolysis and its treatment.
    Mihara H, Onari K, Cheng BC, David SM, Zdeblick TA.
    Spine (Phila Pa 1976); 2003 Feb 01; 28(3):235-8. PubMed ID: 12567023
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 65.