These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 15096675

  • 1. Adaptation to rotating artificial gravity environments.
    Lackner JR, DiZio PA.
    J Vestib Res; 2003; 13(4-6):321-30. PubMed ID: 15096675
    [Abstract] [Full Text] [Related]

  • 2. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P, Lackner JR.
    J Vestib Res; 2003; 12(5-6):291-9. PubMed ID: 14501105
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Adaptation in a rotating artificial gravity environment.
    Lackner JR, DiZio P.
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):194-202. PubMed ID: 9795214
    [Abstract] [Full Text] [Related]

  • 5. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P, Bortolami SB, DiZio P, Lackner JR.
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [Abstract] [Full Text] [Related]

  • 6. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR, Dizio P.
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [Abstract] [Full Text] [Related]

  • 7. Motor control and learning in altered dynamic environments.
    Lackner JR, DiZio P.
    Curr Opin Neurobiol; 2005 Dec; 15(6):653-9. PubMed ID: 16271464
    [Abstract] [Full Text] [Related]

  • 8. Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation.
    Brown EL, Hecht H, Young LR.
    J Vestib Res; 2005 Dec; 12(5-6):271-82. PubMed ID: 14501103
    [Abstract] [Full Text] [Related]

  • 9. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV, DiZio P, Lackner JR.
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [Abstract] [Full Text] [Related]

  • 10. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A, DiZio P, Lackner JR.
    J Neurophysiol; 2019 Jun 01; 121(6):2028-2041. PubMed ID: 30943090
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C, Bringoux L, Gauthier GM, Vercher JL.
    Brain Res Bull; 2006 Dec 11; 71(1-3):101-10. PubMed ID: 17113935
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P, Lackner JR.
    J Neurophysiol; 2001 Feb 11; 85(2):784-9. PubMed ID: 11160512
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Sensorimotor adaptation to inertial forces in a multi-force environment does not depend on the number of targets: indirect validation of the altered-proprioception hypothesis.
    Bourdin C, Bock O.
    Neurosci Lett; 2006 Nov 20; 408(3):173-7. PubMed ID: 17030093
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.