These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 15096675

  • 21. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior.
    Bakshi A, Ventura J, DiZio P, Lackner JR.
    J Neurophysiol; 2014 Mar; 111(5):977-83. PubMed ID: 24304863
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ, Hodgson AJ, Milner TE.
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations.
    Nowak DA, Hermsdörfer J, Schneider E, Glasauer S.
    Exp Brain Res; 2004 Jul; 157(2):241-54. PubMed ID: 15064877
    [Abstract] [Full Text] [Related]

  • 29. Orientation and movement in unusual force environments.
    Lackner JR.
    Psychol Sci; 1993 May; 4(3):134-42. PubMed ID: 11537188
    [Abstract] [Full Text] [Related]

  • 30. Rapid vestibular adaptation in a rotating environment by means of controlled head movements.
    Graybiel A, Wood CD.
    Aerosp Med; 1969 Jun; 40(6):638-43. PubMed ID: 5305841
    [No Abstract] [Full Text] [Related]

  • 31. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model.
    Bakshi A, DiZio P, Lackner JR.
    J Neurophysiol; 2019 Jun 01; 121(6):2042-2060. PubMed ID: 30943111
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Artificial gravity: head movements during short-radius centrifugation.
    Young LR, Hecht H, Lyne LE, Sienko KH, Cheung CC, Kavelaars J.
    Acta Astronaut; 2001 Jun 01; 49(3-10):215-26. PubMed ID: 11669111
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Progressive adaptation to Coriolis accelerations associated with 1-rpm increments in the velocity of the slow rotation room.
    Reason JT, Graybiel A.
    Aerosp Med; 1970 Jan 01; 41(1):73-9. PubMed ID: 5309794
    [No Abstract] [Full Text] [Related]

  • 38. Perceptual stability during active head movements orthogonal and parallel to gravity.
    Jaekl P, Jenkin M, Harris LR.
    J Vestib Res; 2003 Jan 01; 13(4-6):265-71. PubMed ID: 15096670
    [Abstract] [Full Text] [Related]

  • 39. Gravity-dependent and gravity-independent gain changes during vertical vestibulo-ocular reflex (VOR) adaptation.
    Xiang Y, Raphan T, Cohen B, Yakushin SB.
    J Gravit Physiol; 2004 Jul 01; 11(2):P9-12. PubMed ID: 16231429
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.