These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 15103633

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases.
    Shokhen M, Khazanov N, Albeck A.
    Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756
    [Abstract] [Full Text] [Related]

  • 28. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J, Goodman MF, Warshel A.
    J Am Chem Soc; 2003 Jul 09; 125(27):8163-77. PubMed ID: 12837086
    [Abstract] [Full Text] [Related]

  • 29. Serine proteases: an ab initio molecular dynamics study.
    De Santis L, Carloni P.
    Proteins; 1999 Dec 01; 37(4):611-8. PubMed ID: 10651276
    [Abstract] [Full Text] [Related]

  • 30. (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases.
    Derewenda ZS, Derewenda U, Kobos PM.
    J Mol Biol; 1994 Aug 05; 241(1):83-93. PubMed ID: 8051710
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Realistic simulations of proton transport along the gramicidin channel: demonstrating the importance of solvation effects.
    Braun-Sand S, Burykin A, Chu ZT, Warshel A.
    J Phys Chem B; 2005 Jan 13; 109(1):583-92. PubMed ID: 16851050
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation.
    Nishihira J, Tachikawa H.
    J Theor Biol; 1999 Feb 21; 196(4):513-9. PubMed ID: 10036203
    [Abstract] [Full Text] [Related]

  • 36. A model study of the efficiency of the Asp-His-Ser triad.
    Lankau T, Yu CH.
    J Comput Chem; 2010 Jul 15; 31(9):1853-9. PubMed ID: 20082386
    [Abstract] [Full Text] [Related]

  • 37. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y, Warshel A.
    J Phys Chem B; 2008 Jan 24; 112(3):1007-15. PubMed ID: 18166038
    [Abstract] [Full Text] [Related]

  • 38. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis.
    Scheiner S.
    J Phys Chem B; 2008 Jun 05; 112(22):6837-46. PubMed ID: 18461994
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.