These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
80 related items for PubMed ID: 15105551
1. In vitro transcription of Tomato spotted wilt virus is independent of translation. van Knippenberg I, Goldbach R, Kormelink R. J Gen Virol; 2004 May; 85(Pt 5):1335-1338. PubMed ID: 15105551 [Abstract] [Full Text] [Related]
8. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. Duijsings D, Kormelink R, Goldbach R. EMBO J; 2001 May 15; 20(10):2545-52. PubMed ID: 11350944 [Abstract] [Full Text] [Related]
11. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation. Carvajal F, Vallejos M, Walters B, Contreras N, Hertz MI, Olivares E, Cáceres CJ, Pino K, Letelier A, Thompson SR, López-Lastra M. FEBS J; 2016 Jul 10; 283(13):2508-27. PubMed ID: 27191820 [Abstract] [Full Text] [Related]
12. Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein. Richmond KE, Chenault K, Sherwood JL, German TL. Virology; 1998 Aug 15; 248(1):6-11. PubMed ID: 9705250 [Abstract] [Full Text] [Related]
13. Early events of tomato spotted wilt transcription and replication in protoplasts. Steinecke P, Heinze C, Oehmen E, Adam G, Schreier PH. New Microbiol; 1998 Jul 15; 21(3):263-8. PubMed ID: 9699207 [Abstract] [Full Text] [Related]
14. Association of L protein and in vitro tomato spotted wilt virus RNA-dependent RNA polymerase activity. Chapman EJ, Hilson P, German TL. Intervirology; 2003 Jul 15; 46(3):177-81. PubMed ID: 12867756 [Abstract] [Full Text] [Related]
15. Non-viral heterogeneous sequences at the 5' ends of tomato spotted wilt virus mRNAs. Kormelink R, van Poelwijk F, Peters D, Goldbach R. J Gen Virol; 1992 Aug 15; 73 ( Pt 8)():2125-8. PubMed ID: 1645150 [Abstract] [Full Text] [Related]
16. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH. Mol Cell; 2004 Jan 16; 13(1):113-24. PubMed ID: 14731399 [Abstract] [Full Text] [Related]
17. Detection of Tomato spotted wilt virus in Tomato in the Baja California Peninsula of Mexico. Holguín-Peña RJ, Rueda-Puente EO. Plant Dis; 2007 Dec 16; 91(12):1682. PubMed ID: 30780619 [Abstract] [Full Text] [Related]
18. Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. Vaira AM, Semeria L, Crespi S, Lisa V, Allavena A, Accotto GP. Mol Plant Microbe Interact; 1995 Dec 16; 8(1):66-73. PubMed ID: 7772806 [Abstract] [Full Text] [Related]
19. Molecular Characteristics of Subgenomic RNAs and the Cap-Dependent Translational Advantage Relative to Corresponding Genomic RNAs of Tomato spotted wilt virus. Yang C, Yu C, Zhang Z, Wang D, Yuan X. Int J Mol Sci; 2022 Dec 01; 23(23):. PubMed ID: 36499398 [Abstract] [Full Text] [Related]
20. Evidence of a tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Margaria P, Ciuffo M, Rosa C, Turina M. Virus Res; 2015 Jan 22; 196():157-61. PubMed ID: 25433286 [Abstract] [Full Text] [Related] Page: [Next] [New Search]