These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
409 related items for PubMed ID: 15109753
21. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective. Vegter RJ, de Groot S, Lamoth CJ, Veeger DH, van der Woude LH. IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):104-13. PubMed ID: 24122567 [Abstract] [Full Text] [Related]
22. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion. Guo LY, Su FC, Wu HW, An KN. Clin Biomech (Bristol); 2003 Feb; 18(2):106-14. PubMed ID: 12550808 [Abstract] [Full Text] [Related]
23. Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion. Lenton JP, van der Woude LH, Fowler NE, Nicholson G, Tolfrey K, Goosey-Tolfrey VL. Int J Sports Med; 2013 Feb; 34(2):158-64. PubMed ID: 22918717 [Abstract] [Full Text] [Related]
24. Wheelchair racing: effects of rim diameter and speed on physiology and technique. van der Woude LH, Veeger HE, Rozendal RH, van Ingen Schenau GJ, Rooth F, van Nierop P. Med Sci Sports Exerc; 1988 Oct; 20(5):492-500. PubMed ID: 3193866 [Abstract] [Full Text] [Related]
25. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study. Theisen D, Francaux M, Fayt A, Sturbois X. Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976 [Abstract] [Full Text] [Related]
26. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis. Guo LY, Su FC, An KN. Clin Biomech (Bristol); 2006 Feb; 21(2):107-15. PubMed ID: 16226359 [Abstract] [Full Text] [Related]
27. A computerized wheelchair ergometer. Results of a comparison study. Veeger HE, van der Woude LH, Rozendal RH. Scand J Rehabil Med; 1992 Feb; 24(1):17-23. PubMed ID: 1604258 [Abstract] [Full Text] [Related]
28. Differentiated perceived exertion and self-regulated wheelchair exercise. Paulson TA, Bishop NC, Eston RG, Goosey-Tolfrey VL. Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415 [Abstract] [Full Text] [Related]
29. Spontaneously chosen crank rate variations in submaximal arm exercise with inexperienced subjects. Effects on cardiorespiratory and efficiency parameters. Marais G, Dupont L, Maillet M, Weissland T, Vanvelcenaher J, Pelayo P. Int J Sports Med; 2002 Feb; 23(2):120-4. PubMed ID: 11842359 [Abstract] [Full Text] [Related]
30. Thermoregulatory and physiological responses of wheelchair athletes to prolonged arm crank and wheelchair exercise. Price MJ, Campbell IG. Int J Sports Med; 1999 Oct; 20(7):457-63. PubMed ID: 10551341 [Abstract] [Full Text] [Related]
31. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Smith PA, Glaser RM, Petrofsky JS, Underwood PD, Smith GB, Richard JJ. Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094 [Abstract] [Full Text] [Related]
32. Effects of an interval training programme of the upper limbs on a wheelchair ergometer in able-bodied subjects. Tordi N, Gimenez M, Predine E, Rouillon JD. Int J Sports Med; 1998 Aug; 19(6):408-14. PubMed ID: 9774208 [Abstract] [Full Text] [Related]
33. Circulatory and metabolic responses of women to arm crank and wheelchair ergometry. Sedlock DA, Knowlton RG, Fitzgerald PI. Arch Phys Med Rehabil; 1990 Feb; 71(2):97-100. PubMed ID: 2302053 [Abstract] [Full Text] [Related]
34. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion. Patterson P, Draper S. Biomed Sci Instrum; 1997 Feb; 33():477-81. PubMed ID: 9731406 [Abstract] [Full Text] [Related]
35. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. Beekman CE, Miller-Porter L, Schoneberger M. Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055 [Abstract] [Full Text] [Related]
36. Effects of 20 days bed rest on mechanical efficiency during upright cycling and leg muscle mass in young males. Suzuki Y, Haruna Y, Kuriyama K, Kawakubo K, Igawa S, Goto S, Makita Y, Gunji A. J Gravit Physiol; 1995 Feb; 2(1):P74-5. PubMed ID: 11538941 [Abstract] [Full Text] [Related]
37. Field test estimation of maximal oxygen consumption in wheelchair users. Franklin BA, Swantek KI, Grais SL, Johnstone KS, Gordon S, Timmis GC. Arch Phys Med Rehabil; 1990 Jul; 71(8):574-8. PubMed ID: 2369293 [Abstract] [Full Text] [Related]
38. Biomechanics of wheelchair propulsion by able-bodied subjects. Ruggles DL, Cahalan T, An KN. Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446 [Abstract] [Full Text] [Related]
39. Submaximal arm crank ergometry: Effects of crank axis positioning on mechanical efficiency, physiological strain and perceived discomfort. van Drongelen S, Maas JC, Scheel-Sailer A, Van Der Woude LH. J Med Eng Technol; 2009 May; 33(2):151-7. PubMed ID: 19205993 [Abstract] [Full Text] [Related]
40. The curvature constant parameter of the power-duration curve for varied-power exercise. Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ. Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]