These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


65 related items for PubMed ID: 151285

  • 1. K+--induced changes of oxygen uptake by neuronal enriched and glial enriched fractions from mouse brain cortex.
    Kovárů H, Lisý V, Lodin Z.
    Physiol Bohemoslov; 1978; 27(4):295-9. PubMed ID: 151285
    [Abstract] [Full Text] [Related]

  • 2. Oxygen uptake by suspension of mouse brain cells.
    Kovárů H, Lodin Z.
    Neurobiology; 1975 Oct; 5(5):249-53. PubMed ID: 1202388
    [Abstract] [Full Text] [Related]

  • 3. [Cationic exchange at the level of neurones and glial cells of brain].
    Franck G.
    Arch Int Physiol Biochim; 1970 Oct; 78(4):63-866. PubMed ID: 4099690
    [No Abstract] [Full Text] [Related]

  • 4. Effect of genetic differences on K+-induced metabolic changes in allogeneic murine brain cortical cells incubated in vitro.
    Kovárů H.
    Med Biol; 1980 Oct; 58(5):273-80. PubMed ID: 7206833
    [Abstract] [Full Text] [Related]

  • 5. Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells.
    Rose SP.
    Biochem J; 1967 Jan; 102(1):33-43. PubMed ID: 4291562
    [Abstract] [Full Text] [Related]

  • 6. [Possibility of using enriched glial and neuronal cell fractions to study transport of neurotransmitter amino acids in old age].
    Aprikian GV, Shaginian VA, Gevorkian GA, Akhverdian ES, Melikian AM.
    Vopr Biokhim Mozga; 1978 Jan; 13():295-302. PubMed ID: 756645
    [Abstract] [Full Text] [Related]

  • 7. Functional role of the potassium-induced stimulation of oxygen uptake in brain slices studied with cesium as a probe.
    Hertz L, Kjeldsen CS.
    J Neurosci Res; 1985 Jan; 14(1):83-93. PubMed ID: 4020900
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Proceedings: Incorporation of 32-P into the phospholipids of neuronal and glial cell-enriched fractions isolated from rabbit cerebral cortex. Effect of norepinephrine.
    Woelk H, Kanig K, Peiler-Ichikawa K.
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1270. PubMed ID: 4461623
    [No Abstract] [Full Text] [Related]

  • 10. The in vitro effect of different substrates and high potassium concentration on the respiratory rate of slices, cell suspension and homogenate of brain.
    Kovárů H, Lisý V, Lodin Z.
    Physiol Bohemoslov; 1974 Oct; 23(6):489-96. PubMed ID: 4373772
    [No Abstract] [Full Text] [Related]

  • 11. Evidence for differential function of neuronal and glial cells in protein metabolism and amino acid transport.
    Hamberger A, Babitch JA, Blomstrand C, Hansson HA, Sellström A.
    J Neurosci Res; 1975 Oct; 1(1):37-56. PubMed ID: 817035
    [Abstract] [Full Text] [Related]

  • 12. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD, Heinemann U, Dietzel I.
    Adv Neurol; 1986 Oct; 44():619-39. PubMed ID: 3518349
    [Abstract] [Full Text] [Related]

  • 13. [Changes of extracellular potassium concentration in the cortex and brain stem during the acute phase of experimental closed head injury (author's transl)].
    Takahashi H, Manaka S, Sano K.
    No To Shinkei; 1981 Apr; 33(4):365-76. PubMed ID: 7196250
    [Abstract] [Full Text] [Related]

  • 14. Biosynthesis of DNA and RNA in neuronal and glial cells from various regions of developing rat brain.
    Giuffrida AM, Hamberger A, Serra I.
    J Neurosci Res; 1976 Apr; 2(3):203-15. PubMed ID: 994249
    [Abstract] [Full Text] [Related]

  • 15. Regulation of extracellular potassium concentration in epileptogenesis.
    Pedley TA, Fisher RS, Futamachi KJ, Prince DA.
    Fed Proc; 1976 May 01; 35(6):1254-9. PubMed ID: 816678
    [Abstract] [Full Text] [Related]

  • 16. Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning.
    Szeligo F, Leblond CP.
    J Comp Neurol; 1977 Mar 15; 172(2):247-63. PubMed ID: 838881
    [Abstract] [Full Text] [Related]

  • 17. The role of the neuronal cell in the metabolism of the rat cerebral cortex.
    Ruscák M, Ruscáková D, Hager H.
    Physiol Bohemoslov; 1968 Mar 15; 17(2):113-21. PubMed ID: 4233523
    [No Abstract] [Full Text] [Related]

  • 18. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I, Heinemann U, Lux HD.
    Glia; 1989 Mar 15; 2(1):25-44. PubMed ID: 2523337
    [Abstract] [Full Text] [Related]

  • 19. Glutamate uptake by rat brain astroglia incubated in human cerebrospinal fluid.
    Colombo JA.
    Med Sci Monit; 2005 Jan 15; 11(1):BR13-7. PubMed ID: 15614184
    [Abstract] [Full Text] [Related]

  • 20. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D, Gabriel S, Heinemann U.
    Brain Res; 2007 Oct 10; 1173():14-26. PubMed ID: 17850772
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.