These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 15135584

  • 1. Modelling effect of physical and chemical parameters on heat inactivation kinetics of hepatitis A virus in a fruit model system.
    Deboosere N, Legeay O, Caudrelier Y, Lange M.
    Int J Food Microbiol; 2004 May 15; 93(1):73-85. PubMed ID: 15135584
    [Abstract] [Full Text] [Related]

  • 2. A predictive microbiology approach for thermal inactivation of Hepatitis A virus in acidified berries.
    Deboosere N, Pinon A, Delobel A, Temmam S, Morin T, Merle G, Blaise-Boisseau S, Perelle S, Vialette M.
    Food Microbiol; 2010 Oct 15; 27(7):962-7. PubMed ID: 20688239
    [Abstract] [Full Text] [Related]

  • 3. Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestis.
    Bahçeci KS, Acar J.
    Int J Food Microbiol; 2007 Dec 15; 120(3):266-73. PubMed ID: 17936391
    [Abstract] [Full Text] [Related]

  • 4. Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus.
    Kingsley DH, Chen H.
    Int J Food Microbiol; 2009 Mar 15; 130(1):61-4. PubMed ID: 19187994
    [Abstract] [Full Text] [Related]

  • 5. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I, Dussap CG, Lebert A.
    Int J Food Microbiol; 2005 Jul 25; 102(3):305-22. PubMed ID: 16014298
    [Abstract] [Full Text] [Related]

  • 6. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions.
    Gao YL, Ju XR, Wu-Ding.
    Int J Food Microbiol; 2007 Jul 15; 117(3):287-94. PubMed ID: 17537535
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Use of survival analysis and Classification and Regression Trees to model the growth/no growth boundary of spoilage yeasts as affected by alcohol, pH, sucrose, sorbate and temperature.
    Evans DG, Everis LK, Betts GD.
    Int J Food Microbiol; 2004 Apr 01; 92(1):55-67. PubMed ID: 15033268
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F, Zareifard MR, Zhu S, Huizing RH, Grabowski S, Marcotte M.
    Food Microbiol; 2008 Oct 01; 25(7):936-41. PubMed ID: 18721685
    [Abstract] [Full Text] [Related]

  • 11. Growth, inactivation and histamine formation of Morganella psychrotolerans and Morganella morganii - development and evaluation of predictive models.
    Emborg J, Dalgaard P.
    Int J Food Microbiol; 2008 Dec 10; 128(2):234-43. PubMed ID: 18845350
    [Abstract] [Full Text] [Related]

  • 12. A systematic approach to determine global thermal inactivation parameters for various food pathogens.
    van Asselt ED, Zwietering MH.
    Int J Food Microbiol; 2006 Mar 01; 107(1):73-82. PubMed ID: 16274824
    [Abstract] [Full Text] [Related]

  • 13. Effect of pH, water activity and gel micro-structure, including oxygen profiles and rheological characterization, on the growth kinetics of Salmonella Typhimurium.
    Theys TE, Geeraerd AH, Verhulst A, Poot K, Van Bree I, Devlieghere F, Moldenaers P, Wilson D, Brocklehurst T, Van Impe JF.
    Int J Food Microbiol; 2008 Nov 30; 128(1):67-77. PubMed ID: 18834641
    [Abstract] [Full Text] [Related]

  • 14. Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities.
    Fernández A, López M, Bernardo A, Condón S, Raso J.
    Food Microbiol; 2007 Jun 30; 24(4):372-9. PubMed ID: 17189763
    [Abstract] [Full Text] [Related]

  • 15. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus.
    Esnoz A, Periago PM, Conesa R, Palop A.
    Int J Food Microbiol; 2006 Feb 01; 106(2):153-8. PubMed ID: 16216369
    [Abstract] [Full Text] [Related]

  • 16. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination.
    Valdramidis VP, Belaubre N, Zuniga R, Foster AM, Havet M, Geeraerd AH, Swain MJ, Bernaerts K, Van Impe JF, Kondjoyan A.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):261-74. PubMed ID: 15854711
    [Abstract] [Full Text] [Related]

  • 17. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ, Feeherry FE, Ross EW.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):21-32. PubMed ID: 15854689
    [Abstract] [Full Text] [Related]

  • 18. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.
    Leguérinel I, Couvert O, Mafart P.
    Int J Food Microbiol; 2007 Feb 28; 114(1):100-4. PubMed ID: 17184868
    [Abstract] [Full Text] [Related]

  • 19. Optimal experiment design for cardinal values estimation: guidelines for data collection.
    Bernaerts K, Gysemans KP, Nhan Minh T, Van Impe JF.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):153-65. PubMed ID: 15854701
    [Abstract] [Full Text] [Related]

  • 20. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A, Fernández A, López M, Arenas R, Bernardo A.
    Int J Food Microbiol; 2008 Apr 30; 123(3):212-9. PubMed ID: 18313782
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.