These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1076 related items for PubMed ID: 15139814

  • 1. Model systems, lipid rafts, and cell membranes.
    Simons K, Vaz WL.
    Annu Rev Biophys Biomol Struct; 2004; 33():269-95. PubMed ID: 15139814
    [Abstract] [Full Text] [Related]

  • 2. Lipid rafts as a membrane-organizing principle.
    Lingwood D, Simons K.
    Science; 2010 Jan 01; 327(5961):46-50. PubMed ID: 20044567
    [Abstract] [Full Text] [Related]

  • 3. The state of lipid rafts: from model membranes to cells.
    Edidin M.
    Annu Rev Biophys Biomol Struct; 2003 Jan 01; 32():257-83. PubMed ID: 12543707
    [Abstract] [Full Text] [Related]

  • 4. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A, Draus J, Subczynski WK.
    Cell Mol Biol Lett; 2003 Jan 01; 8(1):147-59. PubMed ID: 12655369
    [Abstract] [Full Text] [Related]

  • 5. Liquid-liquid immiscibility in membranes.
    McConnell HM, Vrljic M.
    Annu Rev Biophys Biomol Struct; 2003 Jan 01; 32():469-92. PubMed ID: 12574063
    [Abstract] [Full Text] [Related]

  • 6. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D, Kaiser HJ, Levental I, Simons K.
    Biochem Soc Trans; 2009 Oct 01; 37(Pt 5):955-60. PubMed ID: 19754431
    [Abstract] [Full Text] [Related]

  • 7. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE, Smith DA, Hooper NM.
    Mol Membr Biol; 2007 Oct 01; 24(3):233-42. PubMed ID: 17520480
    [Abstract] [Full Text] [Related]

  • 8. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR, De Oliveira Carvalho P, Riske KA, Barbosa Rde M, De Paula E, Domingues CC.
    Mol Membr Biol; 2014 Sep 01; 31(6):195-205. PubMed ID: 25222860
    [Abstract] [Full Text] [Related]

  • 9. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD, Lin WC, Ratto TV, Longo ML.
    Biophys J; 2006 Jun 15; 90(12):4466-78. PubMed ID: 16565044
    [Abstract] [Full Text] [Related]

  • 10. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O, Pathak P, London E.
    Biophys J; 2007 Dec 15; 93(12):4307-18. PubMed ID: 17766350
    [Abstract] [Full Text] [Related]

  • 11. Stability of lipid domains.
    García-Sáez AJ, Schwille P.
    FEBS Lett; 2010 May 03; 584(9):1653-8. PubMed ID: 20036662
    [Abstract] [Full Text] [Related]

  • 12. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM, Tamm LK.
    Biophys J; 2004 May 03; 86(5):2965-79. PubMed ID: 15111412
    [Abstract] [Full Text] [Related]

  • 13. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.
    Alsop RJ, Toppozini L, Marquardt D, Kučerka N, Harroun TA, Rheinstädter MC.
    Biochim Biophys Acta; 2015 Mar 03; 1848(3):805-12. PubMed ID: 25475646
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Dynamic domain formation in membranes: thickness-modulation-induced phase separation.
    Schäffer E, Thiele U.
    Eur Phys J E Soft Matter; 2004 Jun 03; 14(2):169-75. PubMed ID: 15254836
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.