These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 15139924

  • 1. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam.
    Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z.
    J Appl Microbiol; 2004; 96(6):1317-23. PubMed ID: 15139924
    [Abstract] [Full Text] [Related]

  • 2. [Production of vitamin C precursor--2-keto-L-gulonic acid from D-sorbitol by mixed culture of microorganisms].
    Yin G, Lin W, Qiao C, Ye Q.
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):709-15. PubMed ID: 12552828
    [Abstract] [Full Text] [Related]

  • 3. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy].
    Zhang J, Zhou J, Liu L, Liu J, Chen K, Du G, Chen J.
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium.
    Zhang J, Zhou J, Liu J, Chen K, Liu L, Chen J.
    Bioresour Technol; 2011 Apr; 102(7):4807-14. PubMed ID: 21296571
    [Abstract] [Full Text] [Related]

  • 7. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy.
    Yang W, Sun H, Dong D, Ma S, Mandlaa, Wang Z, Xu H.
    Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708
    [Abstract] [Full Text] [Related]

  • 8. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia.
    Takagi Y, Sugisawa T, Hoshino T.
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):469-80. PubMed ID: 19902207
    [Abstract] [Full Text] [Related]

  • 9. Transcriptome Analysis of Gluconobacter oxydans WSH-003 Exposed to Elevated 2-Keto-L-Gulonic Acid Reveals the Responses to Osmotic and Oxidative Stress.
    Fang J, Wan H, Zeng W, Li J, Chen J, Zhou J.
    Appl Biochem Biotechnol; 2021 Jan; 193(1):128-141. PubMed ID: 32827065
    [Abstract] [Full Text] [Related]

  • 10. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis.
    Zhu Y, Liu J, Du G, Zhou J, Chen J.
    Bioresour Technol; 2012 Mar; 107():399-404. PubMed ID: 22257860
    [Abstract] [Full Text] [Related]

  • 11. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001.
    Wang P, Zeng W, Du G, Zhou J, Chen J.
    J Biotechnol; 2019 Aug 10; 301():24-34. PubMed ID: 31136757
    [Abstract] [Full Text] [Related]

  • 12. Structure, mechanism and regulation of an artificial microbial ecosystem for vitamin C production.
    Zou W, Liu L, Chen J.
    Crit Rev Microbiol; 2013 Aug 10; 39(3):247-55. PubMed ID: 22994289
    [Abstract] [Full Text] [Related]

  • 13. [Microbiological eco-regulation in Vc two-step fermentation].
    Zhou B, Li Y, Liu Y, Zhang Z, Zhu K, Liao D, Gao Y.
    Ying Yong Sheng Tai Xue Bao; 2002 Nov 10; 13(11):1452-4. PubMed ID: 12625006
    [Abstract] [Full Text] [Related]

  • 14. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004.
    Li D, Liu L, Qin Z, Yu S, Zhou J.
    Bioresour Technol; 2022 Jun 10; 354():127107. PubMed ID: 35381333
    [Abstract] [Full Text] [Related]

  • 15. Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation.
    Wang EX, Liu Y, Ma Q, Dong XT, Ding MZ, Yuan YJ.
    Biotechnol Lett; 2019 Sep 10; 41(8-9):951-961. PubMed ID: 31278569
    [Abstract] [Full Text] [Related]

  • 16. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation.
    Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC.
    Prep Biochem Biotechnol; 2012 Sep 10; 42(1):15-28. PubMed ID: 22239705
    [Abstract] [Full Text] [Related]

  • 17. [Effect of Bacillus megaterium on Gluconobacter oxydans in mixed culture].
    Feng S, Zhang Z, Zhang C, Zhang Z.
    Ying Yong Sheng Tai Xue Bao; 2000 Feb 10; 11(1):119-22. PubMed ID: 11766567
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol.
    Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J.
    Metab Eng; 2014 Jul 10; 24():30-7. PubMed ID: 24792618
    [Abstract] [Full Text] [Related]

  • 20. Comprehensive quality evaluation of corn steep liquor in 2-keto-L-gulonic acid fermentation.
    Gao Y, Yuan YJ.
    J Agric Food Chem; 2011 Sep 28; 59(18):9845-53. PubMed ID: 21793578
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.