These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
559 related items for PubMed ID: 15150249
21. Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. Davies BW, Walker GC. J Bacteriol; 2007 Mar; 189(5):2101-9. PubMed ID: 17172335 [Abstract] [Full Text] [Related]
22. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI. BMC Microbiol; 2010 Mar 06; 10():71. PubMed ID: 20205931 [Abstract] [Full Text] [Related]
23. Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Chao TC, Buhrmester J, Hansmeier N, Pühler A, Weidner S. Appl Environ Microbiol; 2005 Oct 06; 71(10):5969-82. PubMed ID: 16204511 [Abstract] [Full Text] [Related]
24. Most Sinorhizobium meliloti Extracytoplasmic Function Sigma Factors Control Accessory Functions. Lang C, Barnett MJ, Fisher RF, Smith LS, Diodati ME, Long SR. mSphere; 2018 Oct 10; 3(5):. PubMed ID: 30305320 [Abstract] [Full Text] [Related]
25. Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Ampe F, Kiss E, Sabourdy F, Batut J. Genome Biol; 2003 Oct 10; 4(2):R15. PubMed ID: 12620125 [Abstract] [Full Text] [Related]
26. Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon. Box J, Noel KD. Mol Plant Microbe Interact; 2011 Apr 10; 24(4):478-86. PubMed ID: 21375387 [Abstract] [Full Text] [Related]
27. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis. Lu D, Tang G, Wang D, Luo L. Acta Biochim Biophys Sin (Shanghai); 2013 Oct 10; 45(10):882-8. PubMed ID: 23883684 [Abstract] [Full Text] [Related]
28. A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa. Lipuma J, Cinege G, Bodogai M, Oláh B, Kiers A, Endre G, Dupont L, Dusha I. Environ Microbiol; 2014 Dec 10; 16(12):3714-29. PubMed ID: 25156344 [Abstract] [Full Text] [Related]
29. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Zhang XS, Cheng HP. Appl Environ Microbiol; 2006 Apr 10; 72(4):2738-48. PubMed ID: 16597978 [Abstract] [Full Text] [Related]
30. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. Sauviac L, Philippe H, Phok K, Bruand C. J Bacteriol; 2007 Jun 10; 189(11):4204-16. PubMed ID: 17400745 [Abstract] [Full Text] [Related]
31. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. Barnett MJ, Long SR. J Bacteriol; 2018 Feb 01; 200(3):. PubMed ID: 29158240 [Abstract] [Full Text] [Related]
32. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC. J Bacteriol; 2002 Sep 01; 184(18):5067-76. PubMed ID: 12193623 [Abstract] [Full Text] [Related]
35. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. Sasaki S, Minamisawa K, Mitsui H. J Bacteriol; 2016 Sep 01; 198(17):2297-306. PubMed ID: 27297881 [Abstract] [Full Text] [Related]
36. Regulation of the SLT-1A toxin operon by a ferric uptake regulatory protein in toxinogenic strains of Shigella dysenteriae type 1. Svinarich DM, Palchaudhuri S. J Diarrhoeal Dis Res; 1992 Sep 01; 10(3):139-45. PubMed ID: 1430967 [Abstract] [Full Text] [Related]
37. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene. Yu Q, Cai H, Zhang Y, He Y, Chen L, Merritt J, Zhang S, Dong Z. J Bacteriol; 2017 Jan 01; 199(1):. PubMed ID: 27795315 [Abstract] [Full Text] [Related]
38. OxyR-Dependent Transcription Response of Sinorhizobium meliloti to Oxidative Stress. Lehman AP, Long SR. J Bacteriol; 2018 Apr 01; 200(7):. PubMed ID: 29358497 [Abstract] [Full Text] [Related]
39. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Lu M, Jiao S, Gao E, Song X, Li Z, Hao X, Rensing C, Wei G. Appl Environ Microbiol; 2017 Oct 15; 83(20):. PubMed ID: 28778889 [Abstract] [Full Text] [Related]