These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 15152681
1. Optimizing Compton camera geometries. Chelikani S, Gore J, Zubal G. Phys Med Biol; 2004 Apr 21; 49(8):1387-408. PubMed ID: 15152681 [Abstract] [Full Text] [Related]
2. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging. Uche CZ, Cree MJ, Round WH. Australas Phys Eng Sci Med; 2011 Sep 21; 34(3):409-14. PubMed ID: 21556971 [Abstract] [Full Text] [Related]
3. An accurate probabilistic model with detector resolution and Doppler broadening correction in list-mode MLEM reconstruction for Compton camera. Wu C, Zhang S, Li L. Phys Med Biol; 2022 Jun 15; 67(12):. PubMed ID: 35617947 [Abstract] [Full Text] [Related]
4. Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging. Han L, Rogers WL, Huh SS, Clinthorne N. Phys Med Biol; 2008 Dec 21; 53(24):7029-45. PubMed ID: 19015578 [Abstract] [Full Text] [Related]
5. Compton camera study for high efficiency SPECT and benchmark with Anger system. Fontana M, Dauvergne D, Létang JM, Ley JL, Testa É. Phys Med Biol; 2017 Nov 09; 62(23):8794-8812. PubMed ID: 28994664 [Abstract] [Full Text] [Related]
6. Doppler broadening effect on low-energy photon dose calculations using MCNP5 and PENELOPE. Ye SJ, Ove R, Naqvi SA. Health Phys; 2006 Oct 09; 91(4):361-6. PubMed ID: 16966879 [Abstract] [Full Text] [Related]
7. Electron-tracking Compton camera imaging of technetium-95m. Hatsukawa Y, Hayakawa T, Tsukada K, Hashimoto K, Sato T, Asai M, Toyoshima A, Tanimori T, Sonoda S, Kabuki S, Kimura H, Takada A, Mizumoto T, Takaki S. PLoS One; 2018 Oct 09; 13(12):e0208909. PubMed ID: 30532248 [Abstract] [Full Text] [Related]
8. Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling. Staelens S, Strul D, Santin G, Vandenberghe S, Koole M, D'Asseler Y, Lemahieu I, Van de Walle R. Phys Med Biol; 2003 Sep 21; 48(18):3021-42. PubMed ID: 14529208 [Abstract] [Full Text] [Related]
9. A Monte Carlo evaluation of three Compton camera absorbers. Uche CZ, Round WH, Cree MJ. Australas Phys Eng Sci Med; 2011 Sep 21; 34(3):351-60. PubMed ID: 21710232 [Abstract] [Full Text] [Related]
10. Noise evaluation of Compton camera imaging for proton therapy. Ortega PG, Torres-Espallardo I, Cerutti F, Ferrari A, Gillam JE, Lacasta C, Llosá G, Oliver JF, Sala PR, Solevi P, Rafecas M. Phys Med Biol; 2015 Mar 07; 60(5):1845-63. PubMed ID: 25658644 [Abstract] [Full Text] [Related]
11. Accurate Monte Carlo modelling of the back compartments of SPECT cameras. Rault E, Staelens S, Van Holen R, De Beenhouwer J, Vandenberghe S. Phys Med Biol; 2011 Jan 07; 56(1):87-104. PubMed ID: 21119230 [Abstract] [Full Text] [Related]
12. Imaging of polychromatic sources through Compton spectral reconstruction. Muñoz E, Etxebeste A, Dauvergne D, Létang JM, Sarrut D, Maxim V, Testa E. Phys Med Biol; 2022 Oct 04; 67(19):. PubMed ID: 36113437 [Abstract] [Full Text] [Related]
13. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Autret D, Bitar A, Ferrer L, Lisbona A, Bardiès M. Cancer Biother Radiopharm; 2005 Feb 04; 20(1):77-84. PubMed ID: 15778585 [Abstract] [Full Text] [Related]
14. A didactic experiment showing the Compton scattering by means of a clinical gamma camera. Amato E, Auditore L, Campennì A, Minutoli F, Cucinotta M, Sindoni A, Baldari S. Phys Med; 2017 Jun 04; 38():119-121. PubMed ID: 28610692 [Abstract] [Full Text] [Related]
15. Monte Carlo simulation of the basic features of the GE Millennium MG single photon emission computed tomography gamma camera. Vieira L, Vaz TF, Costa DC, Almeida P. Rev Esp Med Nucl Imagen Mol; 2014 Jun 04; 33(1):6-13. PubMed ID: 23726248 [Abstract] [Full Text] [Related]
16. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes. Després P, Funk T, Shah KS, Hasegawa BH. Phys Med Biol; 2007 Jun 07; 52(11):3057-74. PubMed ID: 17505089 [Abstract] [Full Text] [Related]
17. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, Ros D. Phys Med Biol; 2004 Jul 21; 49(14):3125-36. PubMed ID: 15357186 [Abstract] [Full Text] [Related]
18. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans. Vernekohl D, Ahmad M, Chinn G, Xing L. Phys Med Biol; 2016 Dec 21; 61(24):8521-8540. PubMed ID: 27845933 [Abstract] [Full Text] [Related]
19. CCMod: a GATE module for Compton camera imaging simulation. Etxebeste A, Dauvergne D, Fontana M, Létang JM, Llosá G, Munoz E, Oliver JF, Testa É, Sarrut D. Phys Med Biol; 2020 Feb 28; 65(5):055004. PubMed ID: 31869822 [Abstract] [Full Text] [Related]
20. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Taherparvar P, Sadremomtaz A. Australas Phys Eng Sci Med; 2018 Mar 28; 41(1):31-39. PubMed ID: 29230656 [Abstract] [Full Text] [Related] Page: [Next] [New Search]