These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
428 related items for PubMed ID: 15157073
1. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N, Shai Y. Biochemistry; 2004 Jun 01; 43(21):6393-403. PubMed ID: 15157073 [Abstract] [Full Text] [Related]
2. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N, Shai Y. Biochemistry; 2003 Jan 21; 42(2):458-66. PubMed ID: 12525173 [Abstract] [Full Text] [Related]
3. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Papo N, Shai Y. Biochemistry; 2003 Aug 12; 42(31):9346-54. PubMed ID: 12899621 [Abstract] [Full Text] [Related]
4. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. Avrahami D, Shai Y. Biochemistry; 2003 Dec 23; 42(50):14946-56. PubMed ID: 14674771 [Abstract] [Full Text] [Related]
5. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D, Bruston F, El Amri S, Ladram A, Amiche M, Nicolas P. Biochemistry; 2004 Jul 06; 43(26):8391-409. PubMed ID: 15222751 [Abstract] [Full Text] [Related]
6. Structure and organization of hemolytic and nonhemolytic diastereomers of antimicrobial peptides in membranes. Hong J, Oren Z, Shai Y. Biochemistry; 1999 Dec 21; 38(51):16963-73. PubMed ID: 10606532 [Abstract] [Full Text] [Related]
7. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F, Lewis RN, Hodges RS, McElhaney RN. Biochemistry; 2004 Mar 30; 43(12):3679-87. PubMed ID: 15035638 [Abstract] [Full Text] [Related]
11. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Mangoni ML, Papo N, Saugar JM, Barra D, Shai Y, Simmaco M, Rivas L. Biochemistry; 2006 Apr 04; 45(13):4266-76. PubMed ID: 16566601 [Abstract] [Full Text] [Related]
12. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M. Biochemistry; 1996 Sep 24; 35(38):12612-22. PubMed ID: 8823199 [Abstract] [Full Text] [Related]
13. Effect of lipid composition on buforin II structure and membrane entry. Fleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Proteins; 2008 Nov 01; 73(2):480-91. PubMed ID: 18452210 [Abstract] [Full Text] [Related]
14. Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Mangoni ML, Papo N, Mignogna G, Andreu D, Shai Y, Barra D, Simmaco M. Biochemistry; 2003 Dec 02; 42(47):14023-35. PubMed ID: 14636071 [Abstract] [Full Text] [Related]
15. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX, Damodaran K, Blazyk J, Lorigan GA. Biochemistry; 2005 Aug 02; 44(30):10208-17. PubMed ID: 16042398 [Abstract] [Full Text] [Related]
16. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M. Biochemistry; 1997 May 20; 36(20):6124-32. PubMed ID: 9166783 [Abstract] [Full Text] [Related]
17. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Jin Y, Mozsolits H, Hammer J, Zmuda E, Zhu F, Zhang Y, Aguilar MI, Blazyk J. Biochemistry; 2003 Aug 12; 42(31):9395-405. PubMed ID: 12899626 [Abstract] [Full Text] [Related]
18. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. Yang ST, Lee JY, Kim HJ, Eu YJ, Shin SY, Hahm KS, Kim JI. FEBS J; 2006 Sep 12; 273(17):4040-54. PubMed ID: 16889633 [Abstract] [Full Text] [Related]
19. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data. Voglino L, Simon SA, McIntosh TJ. Biochemistry; 1999 Jun 08; 38(23):7509-16. PubMed ID: 10360948 [Abstract] [Full Text] [Related]
20. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S, Chikushi A, Tougu S, Imura Y, Nishida M, Yano Y, Matsuzaki K. Biochemistry; 2004 Dec 14; 43(49):15610-6. PubMed ID: 15581374 [Abstract] [Full Text] [Related] Page: [Next] [New Search]