These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparative analysis of genomic sequences suggests that Trypanosoma cruzi CL Brener contains two sets of non-intercalated repeats of satellite DNA that correspond to T. cruzi I and T. cruzi II types. Elias MC, Vargas N, Tomazi L, Pedroso A, Zingales B, Schenkman S, Briones MR. Mol Biochem Parasitol; 2005 Apr; 140(2):221-7. PubMed ID: 15760661 [Abstract] [Full Text] [Related]
3. Trypanosoma cruzi: an analysis of the minicircle hypervariable regions diversity and its influence on strain typing. Velazquez M, Diez CN, Mora C, Diosque P, Marcipar IS. Exp Parasitol; 2008 Nov; 120(3):235-41. PubMed ID: 18725218 [Abstract] [Full Text] [Related]
4. One- and two-hybrid analysis of the interactions between components of the Trypanosoma cruzi spliced leader RNA gene promoter binding complex. Cribb P, Serra E. Int J Parasitol; 2009 Apr; 39(5):525-32. PubMed ID: 18957295 [Abstract] [Full Text] [Related]
5. Intragenomic spliced leader RNA array analysis of kinetoplastids reveals unexpected transcribed region diversity in Trypanosoma cruzi. Thomas S, Westenberger SJ, Campbell DA, Sturm NR. Gene; 2005 Jun 06; 352():100-8. PubMed ID: 15925459 [Abstract] [Full Text] [Related]
6. Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. Westenberger SJ, Sturm NR, Campbell DA. Int J Parasitol; 2006 Mar 06; 36(3):337-46. PubMed ID: 16443226 [Abstract] [Full Text] [Related]
7. Trypanosoma cruzi strains partition into two groups based on the structure and function of the spliced leader RNA and rRNA gene promoters. Nunes LR, de Carvalho MR, Buck GA. Mol Biochem Parasitol; 1997 Jun 06; 86(2):211-24. PubMed ID: 9200127 [Abstract] [Full Text] [Related]
8. Interest and limitations of Spliced Leader Intergenic Region sequences for analyzing Trypanosoma cruzi I phylogenetic diversity in the Argentinean Chaco. Tomasini N, Lauthier JJ, Monje Rumi MM, Ragone PG, Alberti D'Amato AA, Pérez Brandan C, Cura CI, Schijman AG, Barnabé C, Tibayrenc M, Basombrío MA, Falla A, Herrera C, Guhl F, Diosque P. Infect Genet Evol; 2011 Mar 06; 11(2):300-7. PubMed ID: 21111067 [Abstract] [Full Text] [Related]
10. The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. Schimanski B, Laufer G, Gontcharova L, Günzl A. Nucleic Acids Res; 2004 Mar 06; 32(2):700-9. PubMed ID: 14757834 [Abstract] [Full Text] [Related]
11. Trypanosoma cruzi: can activity of the rRNA gene promoter be used as a marker for speciation? Floeter-Winter LM, Souto RP, Stolf BS, Zingales B, Buck GA. Exp Parasitol; 1997 Jul 06; 86(3):232-4. PubMed ID: 9225775 [No Abstract] [Full Text] [Related]
12. Characterization of spliced leader genes of Trypanosoma ( Megatrypanum) theileri: phylogeographical analysis of Brazilian isolates from cattle supports spatial clustering of genotypes and parity with ribosomal markers. Rodrigues AC, Garcia HA, Batista JS, Minervino AH, Góes-Cavalcante G, Maia da Silva F, Ferreira RC, Campaner M, Paiva F, Teixeira MM. Parasitology; 2010 Jan 06; 137(1):111-22. PubMed ID: 19765336 [Abstract] [Full Text] [Related]
13. Comparative karyotyping as a tool for genome structure analysis of Trypanosoma cruzi. Branche C, Ochaya S, Aslund L, Andersson B. Mol Biochem Parasitol; 2006 May 06; 147(1):30-8. PubMed ID: 16481054 [Abstract] [Full Text] [Related]
14. The transcription promoter of the spliced leader gene from Trypanosoma cruzi. Nunes LR, Carvalho MR, Shakarian AM, Buck GA. Gene; 1997 Apr 01; 188(2):157-68. PubMed ID: 9133587 [Abstract] [Full Text] [Related]
15. Exploring the FL-160-CRP gene family through sequence variability of the complement regulatory protein (CRP) expressed by the trypomastigote stage of Trypanosoma cruzi. Mathieu-Daudé F, Lafay B, Touzet O, Lelièvre J, Parrado F, Bosseno MF, Rojas AM, Fatha S, Ouaissi A, Brenière SF. Infect Genet Evol; 2008 May 01; 8(3):258-66. PubMed ID: 18296127 [Abstract] [Full Text] [Related]
16. Phylogenetic evidence based on Trypanosoma cruzi nuclear gene sequences and information entropy suggest that inter-strain intragenic recombination is a basic mechanism underlying the allele diversity of hybrid strains. Ferreira RC, Briones MR. Infect Genet Evol; 2012 Jul 01; 12(5):1064-71. PubMed ID: 22449773 [Abstract] [Full Text] [Related]
17. Trypanosoma cruzi: subtractive hybridization as a molecular strategy to generate new targets to distinguish groups and hybrids. Toma HK, Yamada-Ogatta SF, Brandão A, Krieger MA, Goldenberg S, Fernandes O. Exp Parasitol; 2007 Oct 01; 117(2):178-87. PubMed ID: 17597613 [Abstract] [Full Text] [Related]
18. Spliced leader RNA-mediated trans-splicing in phylum Rotifera. Pouchkina-Stantcheva NN, Tunnacliffe A. Mol Biol Evol; 2005 Jun 01; 22(6):1482-9. PubMed ID: 15788744 [Abstract] [Full Text] [Related]
19. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Marcili A, Lima L, Cavazzana M, Junqueira AC, Veludo HH, Maia Da Silva F, Campaner M, Paiva F, Nunes VL, Teixeira MM. Parasitology; 2009 May 01; 136(6):641-55. PubMed ID: 19368741 [Abstract] [Full Text] [Related]
20. Trypanosoma cruzi I-III in southern Brazil causing individual and mixed infections in humans, sylvatic reservoirs and triatomines. Abolis NG, Araújo SM, Toledo MJ, Fernandez MA, Gomes ML. Acta Trop; 2011 Dec 01; 120(3):167-72. PubMed ID: 21855523 [Abstract] [Full Text] [Related] Page: [Next] [New Search]