These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
95 related items for PubMed ID: 15162411
61. Effect of surface wettability on the adhesion of proteins. Sethuraman A, Han M, Kane RS, Belfort G. Langmuir; 2004 Aug 31; 20(18):7779-88. PubMed ID: 15323531 [Abstract] [Full Text] [Related]
62. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. Langmuir; 2008 Feb 19; 24(4):1183-93. PubMed ID: 18181652 [Abstract] [Full Text] [Related]
63. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Shen JW, Wu T, Wang Q, Pan HH. Biomaterials; 2008 Feb 19; 29(5):513-32. PubMed ID: 17988731 [Abstract] [Full Text] [Related]
64. Assessment of the transferability of a protein force field for the simulation of peptide-surface interactions. Vellore NA, Yancey JA, Collier G, Latour RA, Stuart SJ. Langmuir; 2010 May 18; 26(10):7396-404. PubMed ID: 20222735 [Abstract] [Full Text] [Related]
65. Development of molecular simulation methods to accurately represent protein-surface interactions: The effect of pressure and its determination for a system with constrained atoms. Yancey JA, Vellore NA, Collier G, Stuart SJ, Latour RA. Biointerphases; 2010 Sep 18; 5(3):85-95. PubMed ID: 21171722 [Abstract] [Full Text] [Related]
66. Modeling and simulation of protein-surface interactions: achievements and challenges. Ozboyaci M, Kokh DB, Corni S, Wade RC. Q Rev Biophys; 2016 Sep 18; 49():e4. PubMed ID: 26821792 [Abstract] [Full Text] [Related]
67. Comparison between empirical protein force fields for the simulation of the adsorption behavior of structured LK peptides on functionalized surfaces. Collier G, Vellore NA, Yancey JA, Stuart SJ, Latour RA. Biointerphases; 2012 Dec 18; 7(1-4):24. PubMed ID: 22589067 [Abstract] [Full Text] [Related]
68. Grand challenges in quantum-classical modeling of molecule-surface interactions. Herbers CR, Li C, van der Vegt NF. J Comput Chem; 2013 May 30; 34(14):1177-88. PubMed ID: 23420673 [Abstract] [Full Text] [Related]
69. Theoretical modeling approach for adsorption of fibronectin on the nanotopographical implants. Gao X, Zhao Y, Wang M, Liu C, Luo J. Proc Inst Mech Eng H; 2023 Sep 30; 237(9):1102-1115. PubMed ID: 37606321 [Abstract] [Full Text] [Related]
70. GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100). Wright LB, Rodger PM, Corni S, Walsh TR. J Chem Theory Comput; 2013 Mar 12; 9(3):1616-30. PubMed ID: 26587623 [Abstract] [Full Text] [Related]
71. Prediction of protein flexibility using a conformationally restrained contact map. Vera R, Synsmir-Zizzamia M, Ojinnaka S, Snyder DA. Proteins; 2018 Oct 12; 86(10):1111-1116. PubMed ID: 30099764 [Abstract] [Full Text] [Related]
72. Protein tethering into multiscale geometries by covalent subtractive printing. Coyer SR, Delamarche E, García AJ. Adv Mater; 2011 Apr 05; 23(13):1550-3. PubMed ID: 21449060 [No Abstract] [Full Text] [Related]
74. Chromatographic adsorption in the study of biological materials. THATCHER JS. Health Cent J; 1947 Dec 05; 1(1):58. PubMed ID: 18863251 [No Abstract] [Full Text] [Related]
75. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Hao L, Li T, Wang L, Shi X, Fan Y, Du C, Wang Y. Bioact Mater; 2021 Oct 05; 6(10):3125-3135. PubMed ID: 33778193 [Abstract] [Full Text] [Related]