These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
346 related items for PubMed ID: 15162487
21. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Han DS, Wang SX, Weinstein H. Biochemistry; 2008 Jul 15; 47(28):7317-21. PubMed ID: 18558776 [Abstract] [Full Text] [Related]
22. Relevance of rhodopsin studies for GPCR activation. Deupi X. Biochim Biophys Acta; 2014 May 15; 1837(5):674-82. PubMed ID: 24041646 [Abstract] [Full Text] [Related]
23. Drug design strategies for targeting G-protein-coupled receptors. Klabunde T, Hessler G. Chembiochem; 2002 Oct 04; 3(10):928-44. PubMed ID: 12362358 [Abstract] [Full Text] [Related]
24. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. Goetz A, Lanig H, Gmeiner P, Clark T. J Mol Biol; 2011 Dec 09; 414(4):611-23. PubMed ID: 22037586 [Abstract] [Full Text] [Related]
25. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Manglik A, Kobilka B. Curr Opin Cell Biol; 2014 Apr 09; 27():136-43. PubMed ID: 24534489 [Abstract] [Full Text] [Related]
26. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Cavasotto CN, Orry AJ, Abagyan RA. Proteins; 2003 May 15; 51(3):423-33. PubMed ID: 12696053 [Abstract] [Full Text] [Related]
27. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system. Zhang Y, Sham YY, Rajamani R, Gao J, Portoghese PS. Chembiochem; 2005 May 15; 6(5):853-9. PubMed ID: 15776407 [Abstract] [Full Text] [Related]
28. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals. Salom D, Le Trong I, Pohl E, Ballesteros JA, Stenkamp RE, Palczewski K, Lodowski DT. J Struct Biol; 2006 Dec 15; 156(3):497-504. PubMed ID: 16837211 [Abstract] [Full Text] [Related]
33. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Kooistra AJ, Leurs R, de Esch IJ, de Graaf C. J Chem Inf Model; 2015 May 26; 55(5):1045-61. PubMed ID: 25848966 [Abstract] [Full Text] [Related]
37. The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin. Springael JY, de Poorter C, Deupi X, Van Durme J, Pardo L, Parmentier M. Cell Signal; 2007 Jul 26; 19(7):1446-56. PubMed ID: 17320349 [Abstract] [Full Text] [Related]
38. Structure-based simulations reveal concerted dynamics of GPCR activation. Leioatts N, Suresh P, Romo TD, Grossfield A. Proteins; 2014 Oct 26; 82(10):2538-51. PubMed ID: 24889093 [Abstract] [Full Text] [Related]
39. Investigation of the influence of external factors on the conformational dynamics of rhodopsin-like receptors by means of molecular dynamics simulation. Novikov GV, Sivozhelezov VS, Kolesnikov SS, Shaitan KV. J Recept Signal Transduct Res; 2014 Apr 26; 34(2):104-18. PubMed ID: 24495290 [Abstract] [Full Text] [Related]
40. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Yuan S, Filipek S, Palczewski K, Vogel H. Nat Commun; 2014 Sep 09; 5():4733. PubMed ID: 25203160 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]