These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1058 related items for PubMed ID: 15166027

  • 1. Regulatory motif finding by logic regression.
    Keles S, van der Laan MJ, Vulpe C.
    Bioinformatics; 2004 Nov 01; 20(16):2799-811. PubMed ID: 15166027
    [Abstract] [Full Text] [Related]

  • 2. Predicting genetic regulatory response using classification.
    Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C.
    Bioinformatics; 2004 Aug 04; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [Abstract] [Full Text] [Related]

  • 3. Regression trees for regulatory element identification.
    Phuong TM, Lee D, Lee KH.
    Bioinformatics; 2004 Mar 22; 20(5):750-7. PubMed ID: 14751992
    [Abstract] [Full Text] [Related]

  • 4. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites.
    Qin ZS, McCue LA, Thompson W, Mayerhofer L, Lawrence CE, Liu JS.
    Nat Biotechnol; 2003 Apr 22; 21(4):435-9. PubMed ID: 12627170
    [Abstract] [Full Text] [Related]

  • 5. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M.
    J Mol Biol; 2001 Dec 14; 314(5):1053-66. PubMed ID: 11743722
    [Abstract] [Full Text] [Related]

  • 6. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT.
    Bioinformatics; 2006 Dec 15; 22(24):2996-3002. PubMed ID: 17068086
    [Abstract] [Full Text] [Related]

  • 7. Identifying cycling genes by combining sequence homology and expression data.
    Lu Y, Rosenfeld R, Bar-Joseph Z.
    Bioinformatics; 2006 Jul 15; 22(14):e314-22. PubMed ID: 16873488
    [Abstract] [Full Text] [Related]

  • 8. Method for identifying transcription factor binding sites in yeast.
    Tsai HK, Huang GT, Chou MY, Lu HH, Li WH.
    Bioinformatics; 2006 Jul 15; 22(14):1675-81. PubMed ID: 16644789
    [Abstract] [Full Text] [Related]

  • 9. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY, Kim Y.
    BMC Bioinformatics; 2006 Jul 04; 7():330. PubMed ID: 16817975
    [Abstract] [Full Text] [Related]

  • 10. Integrating genomic data to predict transcription factor binding.
    Holloway DT, Kon M, DeLisi C.
    Genome Inform; 2005 Jul 04; 16(1):83-94. PubMed ID: 16362910
    [Abstract] [Full Text] [Related]

  • 11. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X, Mehan MR, Huang Y, Waterman MS, Yu PS, Zhou XJ.
    Bioinformatics; 2007 Jul 01; 23(13):i577-86. PubMed ID: 17646346
    [Abstract] [Full Text] [Related]

  • 12. Composite Module Analyst: a fitness-based tool for identification of transcription factor binding site combinations.
    Kel A, Konovalova T, Waleev T, Cheremushkin E, Kel-Margoulis O, Wingender E.
    Bioinformatics; 2006 May 15; 22(10):1190-7. PubMed ID: 16473870
    [Abstract] [Full Text] [Related]

  • 13. DWE: discriminating word enumerator.
    Sumazin P, Chen G, Hata N, Smith AD, Zhang T, Zhang MQ.
    Bioinformatics; 2005 Jan 01; 21(1):31-8. PubMed ID: 15333453
    [Abstract] [Full Text] [Related]

  • 14. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D, Livesay DR.
    BMC Bioinformatics; 2005 May 13; 6():116. PubMed ID: 15890082
    [Abstract] [Full Text] [Related]

  • 15. Computational discovery of transcriptional regulatory rules.
    Pham TH, Clemente JC, Satou K, Ho TB.
    Bioinformatics; 2005 Sep 01; 21 Suppl 2():ii101-7. PubMed ID: 16204087
    [Abstract] [Full Text] [Related]

  • 16. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W, Meyer CA, Liu XS.
    Bioinformatics; 2005 Jun 01; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [Abstract] [Full Text] [Related]

  • 17. Fast model-based protein homology detection without alignment.
    Hochreiter S, Heusel M, Obermayer K.
    Bioinformatics; 2007 Jul 15; 23(14):1728-36. PubMed ID: 17488755
    [Abstract] [Full Text] [Related]

  • 18. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP, Han JH.
    BMC Bioinformatics; 2005 Mar 17; 6():59. PubMed ID: 15773999
    [Abstract] [Full Text] [Related]

  • 19. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J, DeLisi C.
    Bioinformatics; 2006 Jul 15; 22(14):e368-74. PubMed ID: 16873495
    [Abstract] [Full Text] [Related]

  • 20. A mixture model-based discriminate analysis for identifying ordered transcription factor binding site pairs in gene promoters directly regulated by estrogen receptor-alpha.
    Li L, Cheng AS, Jin VX, Paik HH, Fan M, Li X, Zhang W, Robarge J, Balch C, Davuluri RV, Kim S, Huang TH, Nephew KP.
    Bioinformatics; 2006 Sep 15; 22(18):2210-6. PubMed ID: 16809387
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.