These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 15169748
1. Passive dynamics change leg mechanics for an unexpected surface during human hopping. Moritz CT, Farley CT. J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748 [Abstract] [Full Text] [Related]
2. Neuromuscular changes for hopping on a range of damped surfaces. Moritz CT, Greene SM, Farley CT. J Appl Physiol (1985); 2004 May; 96(5):1996-2004. PubMed ID: 14688034 [Abstract] [Full Text] [Related]
3. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. Moritz CT, Farley CT. J Exp Biol; 2005 Mar; 208(Pt 5):939-49. PubMed ID: 15755892 [Abstract] [Full Text] [Related]
4. Effect of fatigue on single-leg hop landing biomechanics. Orishimo KF, Kremenic IJ. J Appl Biomech; 2006 Nov; 22(4):245-54. PubMed ID: 17293621 [Abstract] [Full Text] [Related]
5. Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. van der Krogt MM, de Graaf WW, Farley CT, Moritz CT, Richard Casius LJ, Bobbert MF. J Appl Physiol (1985); 2009 Sep; 107(3):801-8. PubMed ID: 19589956 [Abstract] [Full Text] [Related]
6. Constant and variable stiffness and damping of the leg joints in human hopping. Rapoport S, Mizrahi J, Kimmel E, Verbitsky O, Isakov E. J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575 [Abstract] [Full Text] [Related]
8. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Farley CT, Houdijk HH, Van Strien C, Louie M. J Appl Physiol (1985); 1998 Sep; 85(3):1044-55. PubMed ID: 9729582 [Abstract] [Full Text] [Related]
9. Human hoppers compensate for simultaneous changes in surface compression and damping. Moritz CT, Farley CT. J Biomech; 2006 Sep; 39(6):1030-8. PubMed ID: 16549093 [Abstract] [Full Text] [Related]
10. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Nilsson J, Thorstensson A, Halbertsma J. Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402 [Abstract] [Full Text] [Related]
11. Leg and joint stiffness in human hopping. Kuitunen S, Ogiso K, Komi PV. Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723 [Abstract] [Full Text] [Related]
12. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping. Gibson W, Campbell A, Allison G. Gait Posture; 2013 Sep; 38(4):1005-9. PubMed ID: 23791780 [Abstract] [Full Text] [Related]
14. Leg stiffness adjustment during hopping at different intensities and frequencies. Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N. Acta Bioeng Biomech; 2014 Sep; 16(3):69-76. PubMed ID: 25308379 [Abstract] [Full Text] [Related]
16. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans]. Khorievin VI, Horkovenko AV, Vereshchaka IV. Fiziol Zh (1994); 2013 Sep; 59(1):56-67. PubMed ID: 23713351 [Abstract] [Full Text] [Related]
18. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP, Klute GK, Neptune RR. Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [Abstract] [Full Text] [Related]
19. Inter-segmental coordination: motor pattern in humans stepping over an obstacle with mechanical ankle joint friction. Gueguen N, Charbonneau M, Robert G, Coyle T, Prince F, Mouchnino L. J Biomech; 2005 Jul; 38(7):1491-500. PubMed ID: 15922760 [Abstract] [Full Text] [Related]