These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 15186087

  • 1. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.
    Fukushima RS, Hatfield RD.
    J Agric Food Chem; 2004 Jun 16; 52(12):3713-20. PubMed ID: 15186087
    [Abstract] [Full Text] [Related]

  • 2. Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method.
    Fukushima RS, Kerley MS.
    J Agric Food Chem; 2011 Apr 27; 59(8):3505-9. PubMed ID: 21375240
    [Abstract] [Full Text] [Related]

  • 3. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method.
    Fukushima RS, Hatfield RD.
    J Agric Food Chem; 2001 Jul 27; 49(7):3133-9. PubMed ID: 11453742
    [Abstract] [Full Text] [Related]

  • 4. Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses.
    Fukushima RS, Dehority BA.
    J Anim Sci; 2000 Dec 27; 78(12):3135-43. PubMed ID: 11132828
    [Abstract] [Full Text] [Related]

  • 5. Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana.
    Chang XF, Chandra R, Berleth T, Beatson RP.
    J Agric Food Chem; 2008 Aug 27; 56(16):6825-34. PubMed ID: 18666780
    [Abstract] [Full Text] [Related]

  • 6. Interference of condensed tannin in lignin analyses of dry bean and forage crops.
    Marles MA, Coulman BE, Bett KE.
    J Agric Food Chem; 2008 Nov 12; 56(21):9797-802. PubMed ID: 18841900
    [Abstract] [Full Text] [Related]

  • 7. [Determination of lignin content in tiny Panax ginseng by UV spectrophotometry].
    Li J, Cheng Z, Yang XL, Li S, Gu M, Wan SW, Zhang WJ, Chen JK.
    Zhong Yao Cai; 2006 Mar 12; 29(3):239-41. PubMed ID: 16850721
    [Abstract] [Full Text] [Related]

  • 8. Variability in structural carbohydrates and in vitro digestibility of forages. 3. Guar (Cyamopsis tetragonoloba).
    Das B, Arora SK, Luthra YP.
    J Dairy Sci; 1975 Sep 12; 58(9):1347-51. PubMed ID: 171291
    [Abstract] [Full Text] [Related]

  • 9. Chemical and in vitro digestion proceduces for the prediction of the digestibility of forage crops by sheep.
    Osbourn DF, Terry RA, Outen GE, Cammell SB, Lansley PR.
    Proc Nutr Soc; 1971 Dec 12; 30(3):85A-86A. PubMed ID: 5154133
    [No Abstract] [Full Text] [Related]

  • 10. Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials.
    Goff BM, Murphy PT, Moore KJ.
    J Sci Food Agric; 2012 Mar 15; 92(4):751-8. PubMed ID: 22095731
    [Abstract] [Full Text] [Related]

  • 11. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops.
    Morrison IM.
    J Sci Food Agric; 1972 Jun 15; 23(6):791. PubMed ID: 5068042
    [No Abstract] [Full Text] [Related]

  • 12. Fiber and lignin analysis in concentrate, forage, and feces: detergent versus enzymatic-chemical method.
    Hindrichsen IK, Kreuzer M, Madsen J, Bach Knudsen KE.
    J Dairy Sci; 2006 Jun 15; 89(6):2168-76. PubMed ID: 16702283
    [Abstract] [Full Text] [Related]

  • 13. Modification of a colorimetric analysis for lignin and its use in studying the inhibitory effects of lignin on forage digestion by ruminal microorganisms.
    Fukushima RS, Dehority BA, Loerch SC.
    J Anim Sci; 1991 Jan 15; 69(1):295-304. PubMed ID: 2005024
    [Abstract] [Full Text] [Related]

  • 14. Genetic variations of cell wall digestibility related traits in floral stems of Arabidopsis thaliana accessions as a basis for the improvement of the feeding value in maize and forage plants.
    Barrière Y, Denoue D, Briand M, Simon M, Jouanin L, Durand-Tardif M.
    Theor Appl Genet; 2006 Jun 15; 113(1):163-75. PubMed ID: 16783597
    [Abstract] [Full Text] [Related]

  • 15. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR, Mansfield SD.
    Plant J; 2009 May 15; 58(4):706-14. PubMed ID: 19175772
    [Abstract] [Full Text] [Related]

  • 16. Characterization of asparagus lignin by HPLC.
    Jaramillo-Carmona S, Fuentes-Alventosa JM, Rodríguez-Gutiérrez G, Waldron KW, Smith AC, Guillén-Bejarano R, Fernández-Bolaños J, Jiménez-Araujo A, Rodríguez-Arcos R.
    J Food Sci; 2008 Sep 15; 73(7):C526-32. PubMed ID: 18803697
    [Abstract] [Full Text] [Related]

  • 17. An accurate and non-labor intensive method for the determination of syringyl to guaiacyl ratio in lignin.
    Govender M, Bush T, Spark A, Bose SK, Francis RC.
    Bioresour Technol; 2009 Dec 15; 100(23):5834-9. PubMed ID: 19576762
    [Abstract] [Full Text] [Related]

  • 18. Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy.
    Kong X, Xie J, Wu X, Huang Y, Bao J.
    J Agric Food Chem; 2005 Apr 20; 53(8):2843-8. PubMed ID: 15826028
    [Abstract] [Full Text] [Related]

  • 19. Accuracy of Klason lignin and acid detergent lignin methods as assessed by bomb calorimetry.
    Jung HJ, Varel VH, Weimer PJ, Ralph J.
    J Agric Food Chem; 1999 May 20; 47(5):2005-8. PubMed ID: 10552486
    [Abstract] [Full Text] [Related]

  • 20. Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes.
    Hatfield RD, Grabber J, Ralph J, Brei K.
    J Agric Food Chem; 1999 Feb 20; 47(2):628-32. PubMed ID: 10563943
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.