These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 15186087

  • 21. Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility.
    Lam TB, Iiyama K, Stone BA.
    Phytochemistry; 2003 Sep; 64(2):603-7. PubMed ID: 12943783
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Prediction of digestible energy value of extruded dog food: comparison of methods.
    Hervera M, Baucells MD, Torre C, Buj A, Castrillo C.
    J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):253-9. PubMed ID: 18477305
    [Abstract] [Full Text] [Related]

  • 24. Prediction of in vivo apparent total tract energy digestibility of barley in grower pigs using an in vitro digestibility technique.
    Regmi PR, Sauer WC, Zijlstra RT.
    J Anim Sci; 2008 Oct; 86(10):2619-26. PubMed ID: 18567720
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Prediction of the energy content of tallgrass prairie hay.
    Olson KC, Cochran RC, Titgemeyer EC, Mathis CP, Jones TJ, Heldt JS.
    J Anim Sci; 2008 Jun; 86(6):1372-81. PubMed ID: 18272848
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography-tandem quadrupole mass spectrometry II. Improvement and extension to new analytes.
    Walorczyk S.
    J Chromatogr A; 2008 Oct 24; 1208(1-2):202-14. PubMed ID: 18778832
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops.
    Morrison IM.
    J Sci Food Agric; 1972 Apr 24; 23(4):455-63. PubMed ID: 5029974
    [No Abstract] [Full Text] [Related]

  • 31. High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy.
    Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M.
    Methods Mol Biol; 2009 Apr 24; 581():169-83. PubMed ID: 19768623
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Prediction of digestible energy content of extruded dog food by in vitro analyses.
    Hervera M, Baucells MD, Blanch F, Castrillo C.
    J Anim Physiol Anim Nutr (Berl); 2007 Jun 24; 91(5-6):205-9. PubMed ID: 17516941
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Cell-wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes.
    Sarath G, Akin DE, Mitchell RB, Vogel KP.
    Appl Biochem Biotechnol; 2008 Jul 24; 150(1):1-14. PubMed ID: 18427744
    [Abstract] [Full Text] [Related]

  • 40. Lignin Quantification of Papyri by TGA-Not a Good Idea.
    Bausch F, Owusu DD, Jusner P, Rosado MJ, Rencoret J, Rosner S, Del Río JC, Rosenau T, Potthast A.
    Molecules; 2021 Jul 20; 26(14):. PubMed ID: 34299657
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.