These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 15190465
1. [The VKOR target for warfarin identified]. Le Bonniec B. Med Sci (Paris); 2004 May; 20(5):512-4. PubMed ID: 15190465 [No Abstract] [Full Text] [Related]
2. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy. Hammed A, Matagrin B, Spohn G, Prouillac C, Benoit E, Lattard V. J Biol Chem; 2013 Oct 04; 288(40):28733-42. PubMed ID: 23928358 [Abstract] [Full Text] [Related]
4. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. Wallin R, Martin LF. J Clin Invest; 1985 Nov 10; 76(5):1879-84. PubMed ID: 3932474 [Abstract] [Full Text] [Related]
5. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states. Davis CH, Deerfield D, Wymore T, Stafford DW, Pedersen LG. J Mol Graph Model; 2007 Sep 10; 26(2):401-8. PubMed ID: 17182266 [Abstract] [Full Text] [Related]
6. Functional study of the vitamin K cycle in mammalian cells. Tie JK, Jin DY, Straight DL, Stafford DW. Blood; 2011 Mar 10; 117(10):2967-74. PubMed ID: 21239697 [Abstract] [Full Text] [Related]
8. Developmental changes of vitamin K epoxidase and reductase activities involved in the vitamin K cycle in human liver. Itoh S, Onishi S. Early Hum Dev; 2000 Jan 10; 57(1):15-23. PubMed ID: 10690708 [Abstract] [Full Text] [Related]
11. Warfarin and the vitamin K-dependent gamma-carboxylation system. Wallin R, Hutson SM. Trends Mol Med; 2004 Jul 10; 10(7):299-302. PubMed ID: 15242675 [Abstract] [Full Text] [Related]
12. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats. Tanaka KD, Kawai YK, Ikenaka Y, Harunari T, Tanikawa T, Fujita S, Ishizuka M. J Vet Med Sci; 2013 Feb 10; 75(2):135-9. PubMed ID: 23018795 [Abstract] [Full Text] [Related]
13. Conversion of vitamin K epoxide to hydroxyvitamin K by liver microsomes from warfarin-resistant rats. Nutr Rev; 1983 Aug 10; 41(8):253-4. PubMed ID: 6355923 [No Abstract] [Full Text] [Related]
14. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Jin DY, Tie JK, Stafford DW. Biochemistry; 2007 Jun 19; 46(24):7279-83. PubMed ID: 17523679 [Abstract] [Full Text] [Related]
15. Temporal variation in the effects of warfarin on the vitamin K cycle. Soulban G, Labrecque G, Bélanger PM. Chronobiol Int; 1990 Jun 19; 7(5-6):403-11. PubMed ID: 2097073 [Abstract] [Full Text] [Related]
16. [Vitamin K epoxide reductase: Fresh blood for oral anticoagulant therapies]. Loriot MA, Beaune P. Rev Med Interne; 2006 Dec 19; 27(12):979-82. PubMed ID: 17070618 [Abstract] [Full Text] [Related]
18. Warfarin resistance in a French strain of rats. Lasseur R, Longin-Sauvageon C, Videmann B, Billeret M, Berny P, Benoit E. J Biochem Mol Toxicol; 2005 Dec 19; 19(6):379-85. PubMed ID: 16421894 [Abstract] [Full Text] [Related]
19. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation. Rishavy MA, Usubalieva A, Hallgren KW, Berkner KL. J Biol Chem; 2011 Mar 04; 286(9):7267-78. PubMed ID: 20978134 [Abstract] [Full Text] [Related]
20. B16 tumor cells contain a warfarin sensitive vitamin K1 2,3 epoxide reductase. Uitendaal MP, Thijssen HH, Drittij-Reijnders MJ, Hoeijmakers MJ. Biochem Biophys Res Commun; 1986 Jun 30; 137(3):1015-20. PubMed ID: 3729947 [Abstract] [Full Text] [Related] Page: [Next] [New Search]