These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 15191071
1. Electro-encephalogram disturbances in different sleep-wake states following exposure to high environmental heat. Sinha RK. Med Biol Eng Comput; 2004 May; 42(3):282-7. PubMed ID: 15191071 [Abstract] [Full Text] [Related]
2. Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress. Sinha RK. Med Biol Eng Comput; 2003 Sep; 41(5):595-600. PubMed ID: 14572011 [Abstract] [Full Text] [Related]
3. Analysis of age dependent effects of heat stress on EEG frequency components in rats. Sinha RK. Biomed Environ Sci; 2009 Apr; 22(2):141-50. PubMed ID: 19618692 [Abstract] [Full Text] [Related]
4. Sleep-wake study in an animal model of acute and chronic heat stress. Sinha RK, Ray AK. Physiol Behav; 2006 Oct 30; 89(3):364-72. PubMed ID: 16899261 [Abstract] [Full Text] [Related]
5. EEG power spectrum and neural network based sleep-hypnogram analysis for a model of heat stress. Sinha RK. J Clin Monit Comput; 2008 Aug 30; 22(4):261-8. PubMed ID: 18521711 [Abstract] [Full Text] [Related]
6. Study of changes in some pathophysiological stress markers in different age groups of an animal model of acute and chronic heat stress. Sinha RK. Iran Biomed J; 2007 Apr 30; 11(2):101-111. PubMed ID: 18051952 [Abstract] [Full Text] [Related]
7. An approach to estimate EEG power spectrum as an index of heat stress using backpropagation artificial neural network. Sinha RK. Med Eng Phys; 2007 Jan 30; 29(1):120-4. PubMed ID: 16513406 [Abstract] [Full Text] [Related]
8. Time-frequency analysis and fuzzy-based detection of heat-stressed sleep EEG spectra. Upadhyay PK, Nagpal C. Med Biol Eng Comput; 2021 Jan 30; 59(1):23-39. PubMed ID: 33188622 [Abstract] [Full Text] [Related]
9. Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Papp N, Vas S, Bogáthy E, Kátai Z, Kostyalik D, Bagdy G. Eur J Pharm Sci; 2018 Aug 30; 121():347-355. PubMed ID: 29908300 [Abstract] [Full Text] [Related]
10. Design and validation of a computer-based sleep-scoring algorithm. Louis RP, Lee J, Stephenson R. J Neurosci Methods; 2004 Feb 15; 133(1-2):71-80. PubMed ID: 14757347 [Abstract] [Full Text] [Related]
11. Quantitative electro-oculography and electroencephalography as indices of alertness. Hyoki K, Shigeta M, Tsuno N, Kawamuro Y, Kinoshita T. Electroencephalogr Clin Neurophysiol; 1998 Mar 15; 106(3):213-9. PubMed ID: 9743279 [Abstract] [Full Text] [Related]
12. Inactivation of the Tuberomammillary Nucleus by GABAA Receptor Agonist Promotes Slow Wave Sleep in Freely Moving Rats and Histamine-Treated Rats. Xie JF, Fan K, Wang C, Xie P, Hou M, Xin L, Cui GF, Wang LX, Shao YF, Hou YP. Neurochem Res; 2017 Aug 15; 42(8):2314-2325. PubMed ID: 28365867 [Abstract] [Full Text] [Related]
13. Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions. Baumann CR, Kilic E, Petit B, Werth E, Hermann DM, Tafti M, Bassetti CL. Sleep; 2006 Oct 15; 29(10):1339-44. PubMed ID: 17068988 [Abstract] [Full Text] [Related]
14. Changes in sleep on chronic exposure to warm and cold ambient temperatures. Mahapatra AP, Mallick HN, Kumar VM. Physiol Behav; 2005 Feb 15; 84(2):287-94. PubMed ID: 15708780 [Abstract] [Full Text] [Related]
15. [Using the histogram analysis method to assess the time-frequency features of rat EEG under different vigilance states]. Feng Z. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun 15; 21(3):371-6. PubMed ID: 15250136 [Abstract] [Full Text] [Related]
16. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. Stephenson R, Caron AM, Famina S. Sleep; 2015 May 01; 38(5):685-97. PubMed ID: 25669184 [Abstract] [Full Text] [Related]
17. A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep-wake states in rats. Shaw FZ, Lai CJ, Chiu TH. J Neurosci Methods; 2002 Jul 30; 118(1):77-87. PubMed ID: 12191760 [Abstract] [Full Text] [Related]
18. All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects. Ferri R, Bruni O, Miano S, Plazzi G, Terzano MG. Clin Neurophysiol; 2005 Oct 30; 116(10):2429-40. PubMed ID: 16112901 [Abstract] [Full Text] [Related]
19. Dim light at night does not disrupt timing or quality of sleep in mice. Borniger JC, Weil ZM, Zhang N, Nelson RJ. Chronobiol Int; 2013 Oct 30; 30(8):1016-23. PubMed ID: 23837748 [Abstract] [Full Text] [Related]
20. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions. Kuo TB, Yang CC. Sleep; 2004 Jun 15; 27(4):648-56. PubMed ID: 15282999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]