These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 15197525

  • 1. Reduced fields of view are neither necessary nor sufficient for distance underestimation but reduce precision and may cause calibration problems.
    Loftus A, Murphy S, McKenna I, Mon-Williams M.
    Exp Brain Res; 2004 Oct; 158(3):328-35. PubMed ID: 15197525
    [Abstract] [Full Text] [Related]

  • 2. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A, Servos P, Goodale MA, Mendarozqueta N, Mon-Williams M.
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [Abstract] [Full Text] [Related]

  • 3. No evidence of a lower visual field specialization for visuomotor control.
    Binsted G, Heath M.
    Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212
    [Abstract] [Full Text] [Related]

  • 4. Visual information throughout a reach determines endpoint precision.
    Ma-Wyatt A, McKee SP.
    Exp Brain Res; 2007 May; 179(1):55-64. PubMed ID: 17109109
    [Abstract] [Full Text] [Related]

  • 5. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE.
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [Abstract] [Full Text] [Related]

  • 6. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H.
    Neuroscience; 2001 Aug; 104(4):1027-41. PubMed ID: 11457588
    [Abstract] [Full Text] [Related]

  • 7. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P, Proteau L.
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [Abstract] [Full Text] [Related]

  • 8. Localization of the plane of regard in space.
    Poljac E, van den Berg AV.
    Exp Brain Res; 2005 Jun; 163(4):457-67. PubMed ID: 15657697
    [Abstract] [Full Text] [Related]

  • 9. Touch responses made to remembered and visual target locations in the dark: a human psychophysical study.
    Burke MR, Grieve KL.
    Exp Brain Res; 2005 Jan; 160(4):460-6. PubMed ID: 15502990
    [Abstract] [Full Text] [Related]

  • 10. Anti-pointing is mediated by a perceptual bias of target location in left and right visual space.
    Heath M, Maraj A, Gradkowski A, Binsted G.
    Exp Brain Res; 2009 Jan; 192(2):275-86. PubMed ID: 18982320
    [Abstract] [Full Text] [Related]

  • 11. Dissociation between vergence and binocular disparity cues in the control of prehension.
    Melmoth DR, Storoni M, Todd G, Finlay AL, Grant S.
    Exp Brain Res; 2007 Nov; 183(3):283-98. PubMed ID: 17665181
    [Abstract] [Full Text] [Related]

  • 12. Endpoints of arm movements to visual targets.
    van den Dobbelsteen JJ, Brenner E, Smeets JB.
    Exp Brain Res; 2001 Jun; 138(3):279-87. PubMed ID: 11460766
    [Abstract] [Full Text] [Related]

  • 13. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S.
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [Abstract] [Full Text] [Related]

  • 14. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG, MacLellan MJ, Tucker MW, Scally AJ, Bennett SJ.
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [Abstract] [Full Text] [Related]

  • 15. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF.
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [Abstract] [Full Text] [Related]

  • 16. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE, Davies TC, Niechwiej E.
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [Abstract] [Full Text] [Related]

  • 17. Influence of visual constraints in the trajectory formation of grasping movements.
    Palluel-Germain R, Boy F, Orliaguet JP, Coello Y.
    Neurosci Lett; 2006 Jun 19; 401(1-2):97-102. PubMed ID: 16556486
    [Abstract] [Full Text] [Related]

  • 18. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets.
    Becker W, Nasios G, Raab S, Jürgens R.
    Exp Brain Res; 2002 Jun 19; 144(4):458-74. PubMed ID: 12037631
    [Abstract] [Full Text] [Related]

  • 19. Are non-relevant objects represented in working memory? The effect of non-target objects on reach and grasp kinematics.
    Jackson SR, Jackson GM, Rosicky J.
    Exp Brain Res; 1995 Jun 19; 102(3):519-30. PubMed ID: 7737398
    [Abstract] [Full Text] [Related]

  • 20. Natural prehension in trials without haptic feedback but only when calibration is allowed.
    Bingham G, Coats R, Mon-Williams M.
    Neuropsychologia; 2007 Jan 28; 45(2):288-94. PubMed ID: 17045314
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.