These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


315 related items for PubMed ID: 15203181

  • 1. Cleft palate by picrotoxin or 3-MP and palatal shelf elevation in GABA-deficient mice.
    Ding R, Tsunekawa N, Obata K.
    Neurotoxicol Teratol; 2004; 26(4):587-92. PubMed ID: 15203181
    [Abstract] [Full Text] [Related]

  • 2. Experimental induction of palate shelf elevation in glutamate decarboxylase 67-deficient mice with cleft palate due to vertically oriented palatal shelf.
    Iseki S, Ishii-Suzuki M, Tsunekawa N, Yamada Y, Eto K, Obata K.
    Birth Defects Res A Clin Mol Teratol; 2007 Oct; 79(10):688-95. PubMed ID: 17849453
    [Abstract] [Full Text] [Related]

  • 3. Involvement of GABA in palate morphogenesis and its relation to diazepam teratogenesis in two mouse strains.
    Wee EL, Zimmerman EF.
    Teratology; 1983 Aug; 28(1):15-22. PubMed ID: 6635994
    [Abstract] [Full Text] [Related]

  • 4. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N, Arata A, Obata K.
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [Abstract] [Full Text] [Related]

  • 5. Characteristics of growth and palatal shelf development in ICR mice after exposure to methylmercury.
    Yasuda Y, Datu AR, Hirata S, Fujimoto T.
    Teratology; 1985 Oct; 32(2):273-86. PubMed ID: 4049286
    [Abstract] [Full Text] [Related]

  • 6. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice.
    Okano J, Suzuki S, Shiota K.
    Toxicol Appl Pharmacol; 2007 May 15; 221(1):42-56. PubMed ID: 17442359
    [Abstract] [Full Text] [Related]

  • 7. Cortisone-induced cleft palate in A/J mice: failure of palatal shelf contact.
    Diewert VM, Pratt RM.
    Teratology; 1981 Oct 15; 24(2):149-62. PubMed ID: 7336358
    [Abstract] [Full Text] [Related]

  • 8. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ, Francis BM, Foley GL.
    J Craniofac Genet Dev Biol; 1998 Oct 15; 18(2):88-99. PubMed ID: 9672841
    [Abstract] [Full Text] [Related]

  • 9. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter.
    Fujii M, Arata A, Kanbara-Kume N, Saito K, Yanagawa Y, Obata K.
    Neuroscience; 2007 May 25; 146(3):1044-52. PubMed ID: 17418495
    [Abstract] [Full Text] [Related]

  • 10. Mouse palatal width growth rates as an "at risk" factor in the development of cleft palate induced by hypervitaminosis A.
    Vergato LA, Doerfler RJ, Mooney MP, Siegel MI.
    J Craniofac Genet Dev Biol; 1997 May 25; 17(4):204-10. PubMed ID: 9493079
    [Abstract] [Full Text] [Related]

  • 11. GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarboxylase 67.
    Obata K, Hirono M, Kume N, Kawaguchi Y, Itohara S, Yanagawa Y.
    Biochem Biophys Res Commun; 2008 Jun 06; 370(3):429-33. PubMed ID: 18384748
    [Abstract] [Full Text] [Related]

  • 12. Role of neurotransmitters in palate development and teratologic implications.
    Zimmerman EF.
    Prog Clin Biol Res; 1985 Jun 06; 171():283-94. PubMed ID: 2858863
    [Abstract] [Full Text] [Related]

  • 13. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice.
    Zhang Y, Mori T, Iseki K, Hagino S, Takaki H, Takeuchi M, Hikake T, Tase C, Murakawa M, Yokoya S, Wanaka A.
    Dev Dyn; 2003 Apr 06; 226(4):618-26. PubMed ID: 12666199
    [Abstract] [Full Text] [Related]

  • 14. Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate.
    Jin JZ, Ding J.
    Dev Dyn; 2006 Feb 06; 235(2):539-46. PubMed ID: 16284941
    [Abstract] [Full Text] [Related]

  • 15. D-penicillamine-induced cleft palate in mice.
    Myint B.
    Teratology; 1984 Dec 06; 30(3):333-40. PubMed ID: 6515561
    [Abstract] [Full Text] [Related]

  • 16. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro.
    Monnerie H, Le Roux PD.
    Exp Neurol; 2007 Jun 06; 205(2):367-82. PubMed ID: 17433299
    [Abstract] [Full Text] [Related]

  • 17. Strain differences between C57BL/6 and SWV mice in time of palate closure and induction of palatal slit and cleft palate.
    Kusanagi T.
    Teratology; 1985 Apr 06; 31(2):279-83. PubMed ID: 3992497
    [Abstract] [Full Text] [Related]

  • 18. GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice.
    Kakizaki T, Oriuchi N, Yanagawa Y.
    Neuroscience; 2015 Mar 12; 288():86-93. PubMed ID: 25545713
    [Abstract] [Full Text] [Related]

  • 19. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase.
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K.
    Proc Natl Acad Sci U S A; 1997 Jun 10; 94(12):6496-9. PubMed ID: 9177246
    [Abstract] [Full Text] [Related]

  • 20. Palatal shelf movement during palatogenesis: a fate map of the fetal mouse palate cultured in vitro.
    Chou MJ, Kosazuma T, Takigawa T, Yamada S, Takahara S, Shiota K.
    Anat Embryol (Berl); 2004 Apr 10; 208(1):19-25. PubMed ID: 14986130
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.