These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 15208296

  • 1. Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: effects of hyperoxia.
    Mourtzakis M, González-Alonso J, Graham TE, Saltin B.
    J Appl Physiol (1985); 2004 Nov; 97(5):1796-802. PubMed ID: 15208296
    [Abstract] [Full Text] [Related]

  • 2. Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise.
    Pedersen PK, Kiens B, Saltin B.
    Acta Physiol Scand; 1999 Aug; 166(4):309-18. PubMed ID: 10468668
    [Abstract] [Full Text] [Related]

  • 3. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J.
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [Abstract] [Full Text] [Related]

  • 4. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.
    Mourtzakis M, Graham TE, González-Alonso J, Saltin B.
    J Appl Physiol (1985); 2008 Aug; 105(2):547-54. PubMed ID: 18511521
    [Abstract] [Full Text] [Related]

  • 5. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PD.
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [Abstract] [Full Text] [Related]

  • 6. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R, Ara I, Gnaiger E, Helge JW, González-Alonso J, Munck-Andersen T, Sondergaard H, Damsgaard R, van Hall G, Saltin B, Calbet JA.
    Acta Physiol (Oxf); 2014 May; 211(1):122-34. PubMed ID: 24528535
    [Abstract] [Full Text] [Related]

  • 7. The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance.
    Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL.
    J Appl Physiol (1985); 2007 Mar; 102(3):1022-7. PubMed ID: 17170202
    [Abstract] [Full Text] [Related]

  • 8. Effect of training on interaction between insulin and exercise in human muscle.
    Dela F, Mikines KJ, Sonne B, Galbo H.
    J Appl Physiol (1985); 1994 Jun; 76(6):2386-93. PubMed ID: 7928862
    [Abstract] [Full Text] [Related]

  • 9. Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise.
    Prieur F, Benoit H, Busso T, Castells J, Geyssant A, Denis C.
    Eur J Appl Physiol; 2002 Dec; 88(3):235-42. PubMed ID: 12458366
    [Abstract] [Full Text] [Related]

  • 10. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles.
    Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K, Riede U, Schlierf G, Kübler W, Schuler G.
    J Am Coll Cardiol; 1995 May; 25(6):1239-49. PubMed ID: 7722116
    [Abstract] [Full Text] [Related]

  • 11. Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men.
    Christiansen D, Eibye K, Hostrup M, Bangsbo J.
    J Physiol; 2020 Jun; 598(12):2337-2353. PubMed ID: 32246768
    [Abstract] [Full Text] [Related]

  • 12. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.
    Stellingwerff T, Glazier L, Watt MJ, LeBlanc PJ, Heigenhauser GJ, Spriet LL.
    J Appl Physiol (1985); 2005 Jan; 98(1):250-6. PubMed ID: 15377650
    [Abstract] [Full Text] [Related]

  • 13. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, Bangsbo J.
    J Physiol; 2004 Feb 01; 554(Pt 3):857-70. PubMed ID: 14634198
    [Abstract] [Full Text] [Related]

  • 14. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen.
    Gonzalez-Alonso J, Richardson RS, Saltin B.
    J Physiol; 2001 Jan 15; 530(Pt 2):331-41. PubMed ID: 11208980
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of acute hyperoxia during exercise on quadriceps electrical activity in active COPD patients.
    Gosselin N, Durand F, Poulain M, Lambert K, Ceugniet F, Préfaut C, Varray A.
    Acta Physiol Scand; 2004 Jul 15; 181(3):333-43. PubMed ID: 15196094
    [Abstract] [Full Text] [Related]

  • 17. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia.
    Peltonen JE, Tikkanen HO, Rusko HK.
    Eur J Appl Physiol; 2001 Jul 15; 85(1-2):82-8. PubMed ID: 11513325
    [Abstract] [Full Text] [Related]

  • 18. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study.
    Vanhatalo A, Fulford J, DiMenna FJ, Jones AM.
    Exp Physiol; 2010 Apr 15; 95(4):528-40. PubMed ID: 20028850
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.
    González-Alonso J, Olsen DB, Saltin B.
    Circ Res; 2002 Nov 29; 91(11):1046-55. PubMed ID: 12456491
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.