These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


973 related items for PubMed ID: 15219581

  • 1. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X, Banich MT, Jacobson BL, Tanabe JL.
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [Abstract] [Full Text] [Related]

  • 2. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T, Hirsch J.
    Neuroimage; 2005 Jan 15; 24(2):539-47. PubMed ID: 15627596
    [Abstract] [Full Text] [Related]

  • 3. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.
    Wittfoth M, Buck D, Fahle M, Herrmann M.
    Neuroimage; 2006 Aug 15; 32(2):921-9. PubMed ID: 16677831
    [Abstract] [Full Text] [Related]

  • 4. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return.
    Chen Q, Wei P, Zhou X.
    J Cogn Neurosci; 2006 Nov 15; 18(11):1937-46. PubMed ID: 17069483
    [Abstract] [Full Text] [Related]

  • 5. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E, Roelofs A, van Turennout M.
    Neuropsychologia; 2009 Aug 15; 47(10):2089-99. PubMed ID: 19467359
    [Abstract] [Full Text] [Related]

  • 6. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Differentiating allocation of resources and conflict detection within attentional control processing.
    Blasi G, Goldberg TE, Elvevåg B, Rasetti R, Bertolino A, Cohen J, Alce G, Zoltick B, Weinberger DR, Mattay VS.
    Eur J Neurosci; 2007 Jan 23; 25(2):594-602. PubMed ID: 17284202
    [Abstract] [Full Text] [Related]

  • 9. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM, Carr TH, Mayer AR, Rao SM.
    J Cogn Neurosci; 2000 Jan 23; 12 Suppl 2():106-17. PubMed ID: 11506651
    [Abstract] [Full Text] [Related]

  • 10. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T, Hirsch J.
    Nat Neurosci; 2005 Dec 23; 8(12):1784-90. PubMed ID: 16286928
    [Abstract] [Full Text] [Related]

  • 11. Separating semantic conflict and response conflict in the Stroop task: a functional MRI study.
    van Veen V, Carter CS.
    Neuroimage; 2005 Sep 23; 27(3):497-504. PubMed ID: 15964208
    [Abstract] [Full Text] [Related]

  • 12. A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder.
    Page LA, Rubia K, Deeley Q, Daly E, Toal F, Mataix-Cols D, Giampietro V, Schmitz N, Murphy DG.
    Psychiatry Res; 2009 Dec 30; 174(3):202-9. PubMed ID: 19906516
    [Abstract] [Full Text] [Related]

  • 13. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I, Sochůrková D, Bocková M.
    Prog Brain Res; 2006 Dec 30; 159():311-30. PubMed ID: 17071240
    [Abstract] [Full Text] [Related]

  • 14. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z, Lei X, Ding C, Li H, Chen A.
    Neuroimage; 2013 Feb 01; 66():577-84. PubMed ID: 23103691
    [Abstract] [Full Text] [Related]

  • 15. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study.
    Downar J, Crawley AP, Mikulis DJ, Davis KD.
    Neuroimage; 2001 Dec 01; 14(6):1256-67. PubMed ID: 11707082
    [Abstract] [Full Text] [Related]

  • 16. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry.
    Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM.
    Neuroimage; 1999 Mar 01; 9(3):269-77. PubMed ID: 10075897
    [Abstract] [Full Text] [Related]

  • 17. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S, Vuilleumier P, Hutton C, Maravita A, Dolan RJ, Driver J.
    Cereb Cortex; 2005 Jun 01; 15(6):770-86. PubMed ID: 15459076
    [Abstract] [Full Text] [Related]

  • 18. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task.
    Wagner G, Sinsel E, Sobanski T, Köhler S, Marinou V, Mentzel HJ, Sauer H, Schlösser RG.
    Biol Psychiatry; 2006 May 15; 59(10):958-65. PubMed ID: 16458263
    [Abstract] [Full Text] [Related]

  • 19. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T, Gruber O.
    Cortex; 2009 Feb 15; 45(2):189-200. PubMed ID: 19150520
    [Abstract] [Full Text] [Related]

  • 20. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER, Mangels JA.
    J Cogn Neurosci; 2006 Jun 15; 18(6):1004-17. PubMed ID: 16839306
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 49.