These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 15222757

  • 1. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37.
    Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A.
    Biochemistry; 2004 Jul 06; 43(26):8459-69. PubMed ID: 15222757
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37.
    Henzler Wildman KA, Lee DK, Ramamoorthy A.
    Biochemistry; 2003 Jun 03; 42(21):6545-58. PubMed ID: 12767238
    [Abstract] [Full Text] [Related]

  • 3. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK.
    Biophys J; 2009 Jan 03; 96(2):552-65. PubMed ID: 19167304
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Molecular Dynamics Simulations of Human Antimicrobial Peptide LL-37 in Model POPC and POPG Lipid Bilayers.
    Zhao L, Cao Z, Bian Y, Hu G, Wang J, Zhou Y.
    Int J Mol Sci; 2018 Apr 13; 19(4):. PubMed ID: 29652823
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37.
    Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A.
    Biophys J; 2010 Jan 20; 98(2):248-57. PubMed ID: 20338846
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR.
    Glaser RW, Sachse C, Dürr UH, Wadhwani P, Afonin S, Strandberg E, Ulrich AS.
    Biophys J; 2005 May 20; 88(5):3392-7. PubMed ID: 15695635
    [Abstract] [Full Text] [Related]

  • 10. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1.
    Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B.
    Biophys J; 2017 Sep 19; 113(6):1290-1300. PubMed ID: 28734478
    [Abstract] [Full Text] [Related]

  • 11. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers.
    Paré C, Lafleur M, Liu F, Lewis RN, McElhaney RN.
    Biochim Biophys Acta; 2001 Mar 09; 1511(1):60-73. PubMed ID: 11248205
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR, Greathouse DV, Koeppe RE, Schäfer H, Marsh D, Killian JA.
    Biochemistry; 1998 Jun 30; 37(26):9333-45. PubMed ID: 9649314
    [Abstract] [Full Text] [Related]

  • 17. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC.
    J Mol Biol; 2009 Sep 25; 392(3):837-54. PubMed ID: 19576903
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.